cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173327 Numbers k such that tau(phi(k))= sopf(k).

Original entry on oeis.org

4, 45, 48, 75, 160, 180, 252, 294, 300, 315, 336, 351, 378, 396, 475, 507, 560, 605, 616, 650, 833, 936, 1216, 1375, 1452, 1690, 1805, 1920, 2023, 2112, 2200, 2349, 2496, 2736, 3211, 3520, 3648, 4095, 4160, 4256, 4332, 4389, 4464, 4477, 4508, 4620, 4693
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).

Examples

			4 is in the sequence because phi(4) = 2, tau(2)=2 and sopf(4)=2 ;
45 is in the sequence because phi(45) = 24, tau(24)=8 and sopf(45)=8.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [ m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+PrimeDivisors(m)]; // Marius A. Burtea, Jul 10 2019
  • Maple
    for n from 1 to 150000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = t2 then print (n): else fi : od :
  • Mathematica
    tpsQ[n_]:=DivisorSigma[0,EulerPhi[n]]==Total[Transpose[FactorInteger[n]][[1]]]; Select[Range[5000],tpsQ] (* Harvey P. Dale, Apr 10 2013 *)
  • PARI
    sopf(n)=my(f=factor(n)[1,]);sum(i=1,#f,f[i])
    is(n)=numdiv(eulerphi(n))==sopf(n) \\ Charles R Greathouse IV, May 20 2013
    

Formula

Numbers n such that A062821(n)= A008472(n)

Extensions

Added punctuation to the examples. Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010