cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173336 Numbers k such that tau(phi(k)) = sigma(sopf(k)).

Original entry on oeis.org

8, 9, 25, 36, 49, 54, 96, 100, 320, 441, 495, 704, 891, 1029, 1080, 1089, 1260, 1331, 1386, 1400, 1617, 1701, 1750, 1815, 1848, 1950, 1960, 2079, 2541, 2574, 2704, 2850, 2880, 3000, 3360, 3430, 3510, 3861, 4125, 4275, 4680, 4704, 4719, 4800, 5070, 5096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); sigma(k) is the sum of divisors of k (A000203); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).

Examples

			8 is in the sequence because phi(8) = 4, tau(4)=3, sopf(8)=2 and sigma(2) = 3 ;
9 is in the sequence because phi(9) = 6, tau(6)=4, sopf(9)=3 and sigma(3) = 4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+Divisors(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory): for n from 1 to 18000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = sigma(t2) then print (n): else fi : od :
  • Mathematica
    sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 5100], DivisorSigma[0,EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* Amiram Eldar, Jul 09 2019 *)
  • PARI
    isok(n) = (n>1) && numdiv(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

k such that A062821(k) = sigma(A008472(k)).

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010