cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173338 Numbers n such that tau(tau(n)) = sopf(sopf(n)), sopf = A008472.

Original entry on oeis.org

2, 4, 14, 16, 27, 64, 158, 168, 196, 216, 312, 378, 384, 440, 456, 482, 546, 680, 702, 744, 770, 1024, 1026, 1032, 1160, 1454, 1608, 1640, 1674, 1880, 2024, 2058, 2295, 2322, 2472, 2750, 2805, 2944, 3336, 3560, 3608, 3618, 3768, 3828, 3944, 3960, 4040, 4096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

sopf(n) is the sum of distinct primes dividing n (without repetition, A008472), tau(n) is the number of divisors of n (A000005).

Examples

			4 is in the sequence: tau(4) = 3, tau(3) = 2; sopf(4) = 2, sopf(2) = 2.
546 is in the sequence: tau(546) = 16, tau(16) = 5; sopf(546) = 25, sopf(25) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [2..5000]|f(f(k)) eq g(g(k)) ]; // Marius A. Burtea, Nov 14 2019
  • Maple
    with(numtheory): for n from 1 to 60000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)): tt1:= ifactors(t2)[2] : tt2 :=sum(tt1[i][1], i=1..nops(tt1)):if tau(tau(n))= tt2 then print (n): else fi : od :
    # second Maple program:
    with(numtheory): sopf:= n-> add(i, i=factorset(n)):
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 0, a(n-1))
          while tau(tau(k)) <> sopf(sopf(k)) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2010
  • Mathematica
    Select[Range[4100],DivisorSigma[0,DivisorSigma[0,#]]==Total[ Transpose[ FactorInteger[ Total[Transpose[FactorInteger[#]][[1]]]]][[1]]]&] (* Harvey P. Dale, Aug 05 2013 *)

Formula

{ n : A010553(n) = A008472(A008472(n)) }.

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010