A318050 Triangle read by rows: T(n,k) is the number of prime knots with n crossings whose unknotting numbers are k.
0, 1, 0, 1, 0, 1, 1, 0, 3, 0, 3, 3, 1, 0, 9, 11, 1, 0, 17, 22, 9, 1
Offset: 3
Examples
Triangle begins: n\k| 0 1 2 3 4 ---+------------------- 3 | 0 1 4 | 0 1 5 | 0 1 1 6 | 0 3 7 | 0 3 3 1 8 | 0 9 11 1 9 | 0 17 22 9 1
References
- P. R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 151-154.
Links
- S. A. Bleiler, A note on unknotting number, Math. Proc. Camb. Phil. Soc. Vol. 96 (1984).
- M. Borodzik and S. Friedl, The unknotting number and classical invariants, I, Algebraic and Geometric Topology Vol. 15 (2015), 85-135.
- J. C. Cha and C. Livingston, KnotInfo: Table of Knot Invariants.
- S. Jablan and L. Radovic, Unknotting numbers of alternating knot and link families, Publications de l'Institut Mathématiques, Nouvelle série, tome 95 (2014), 87-99.
- K. Murasugi, On a certain numerical invariant of link types, Trans. Am. Math. Soc. Vol. 117 (1965), 387-422.
- Eric Weisstein's World of Mathematics, Unknotting Number.
- Index entries for sequences related to knots
Comments