cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060465 Value of x of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 0, 0, 1, -2, 7, -1, -511, 1, -1, 0, 1, -11, -2901096694, -1, 0, 0, 0, 1, -283059965, -2736111468807040, -1, 0, 1, 0, 1, 117367, 12602123297335631, 2, -5, 2, -2, 6, -23, 602, 23961292454, -1, -7, 1, -11, 1, -1, 0, 2, 0, 0, 0, 1, 2, 11, -1, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 10 2001

Keywords

Comments

Indexed by A060464.
Only primitive solutions where gcd(x,y,z) does not divide n are considered.
From the solution A060464(24) = 30 = -283059965^3 - 2218888517^3 + 2220422932^3 (smallest possible magnitudes according to A. Bogomolny), one has a(24) = -283059965. A solution to A060464(25) = 33 remains to be found. Other values for larger n can be found in the first column of the table on Hisanori Mishima's web page. - M. F. Hasler, Nov 10 2015
In 2019 Brooker found a solution for n = 33 (see A332201 and references there) and later in the same year for n = 42, using the collaborative "Charity Engine". It would be nice to have information on how far it is established that these solutions are the smallest possible. - M. F. Hasler, Feb 24 2020

Examples

			For n = 16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -511.
42 = 12602123297335631^3 + 80435758145817515^3 + (-80538738812075974)^3 was found by Andrew Booker and Andrew Sutherland.
74 = 66229832190556^3 + 283450105697727^3 + (-284650292555885)^3 was found by Sander Huisman.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004, Section D5, 231-234.

Crossrefs

Programs

  • Mathematica
    (* this program is not convenient for hard cases *) nmax = 29; xmin[] = 0; xmax[] = 20; xmin[16] = 500; xmax[16] = 600; xmin[24] = 2901096600; xmax[24] = 2901096700; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; r[n_ /; IntegerQ[n^(1/3)]] := {0, 0, n^(1/3)}; mySort = Sort[#1, Which[Abs[#1[[3]]] <= Abs[#2[[3]]], True, Abs[#1[[3]]] == Abs[#2[[3]]], If[Abs[#1[[2]]] <= Abs[#2[[2]]], True, False], True, False] & ] & ; rep := {x_, y_, z_} /; (x + y == 0 && x > 0) :> {-x, -y, z}; r[n_] := Reap[Do[ sp = r[n, x] /. C[1] -> 1; If[sp =!= False, xyz = {x, y, z} /. {ToRules[sp]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]]; sn = r[n, -x] /. C[1] -> 1; If[sn =!= False, xyz = {-x, y, z} /. {ToRules[sn]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]], {x, xmin[n], xmax[n]}]][[2, 1]] // Flatten[#, 1] & // mySort // First; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = Table[xyz = r[n]; Print[ " n = ", n, " {x,y,z} = ", xyz]; xyz[[1]], {n, A060464}] (* Jean-François Alcover, Jul 10 2012 *)

Extensions

Edited and a(24) added by M. F. Hasler, Nov 10 2015
a(25) from Tim Browning and further terms added by Charlie Neder, Mar 09 2019
More terms from Jinyuan Wang, Feb 13 2020

A060466 Value of y of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.

Original entry on oeis.org

0, 0, 1, 1, -1, -1, 0, 1, 1, -2, 10, 2, -1609, 2, -2, -2, -2, -14, -15550555555, -1, -1, 0, 1, 1, -2218888517, -8778405442862239, 2, 2, 2, -3, -3, 134476, 80435758145817515, 2, -7, -3, 3, 7, -26, 659, 60702901317, 3, -11, 3, -21, -2, -4, -4, 3, -1, 0, 1, 1, -4, 20, 2, 9, 2
Offset: 0

Views

Author

N. J. A. Sloane, Apr 10 2001

Keywords

Comments

Indexed by A060464.
Only primitive solutions where gcd(x,y,z) does not divide n are considered.
From the solution A060464(24) = 30 = -283059965^3 - 2218888517^3 + 2220422932^3 (smallest possible magnitudes according to A. Bogomolny), one has a(24) = -2218888517. A solution to A060464(25) = 33 remains to be found. Other values for larger n can be found in the second column of the table on Hisanori Mishima's web page. - M. F. Hasler, Nov 10 2015

Examples

			For n = 16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -1609.
42 = 12602123297335631^3 + 80435758145817515^3 + (-80538738812075974)^3 was found by Andrew Booker and Andrew Sutherland.
74 = 66229832190556^3 + 283450105697727^3 + (-284650292555885)^3 was found by Sander Huisman.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D5.

Crossrefs

Programs

  • Mathematica
    nmax = 29; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = {0, 0, 0, 1, -1, 0, 0, 0, 1, -2, 7, -1, -511, 1, -1, 0, 1, -11, -2901096694, -1, 0, 0, 0, 1}; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; A060466 = Table[y /. ToRules[ Simplify[ r[A060464[[k]], A060465[[k]]] /. C[1] -> 0]], {k, 1, Length[A060464]}] (* Jean-François Alcover, Jul 11 2012 *)

Extensions

In order to be consistent with A060465, where only primitive solutions are selected, a(18)=2 was replaced with -15550555555, by Jean-François Alcover, Jul 11 2012
Edited and a(24) added by M. F. Hasler, Nov 10 2015
a(25) from Tim Browning and further terms added by Charlie Neder, Mar 09 2019
More terms from Jinyuan Wang, Feb 14 2020

A338932 Numbers k such that the Diophantine equation x^3 + y^3 + z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

1, 2, 128, 729, 1458, 4096, 65536, 93312, 2985984, 3906250, 16777216, 28697814, 33554432, 47775744, 80707214, 244140625, 250000000, 387420489, 1836660096, 2847656250, 4715895382, 5165261696, 12230590464, 13841287201, 17179869184, 21208998746, 24461180928
Offset: 1

Views

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^3 - 6*t^3)^3 + (a^3 + 6*t^3)^3 + (-6*a*t^2)^3 = 2*a^9;
(4*a^3 - 3*t^3)^3 + (4*a^3 + 3*t^3)^3 + (-6*a*t^2)^3 = 128*a^9 = 2*4^3*a^9;
(9*a^3 - 2*t^3)^3 + (9*a^3 + 2*t^3)^3 + (-6*a*t^2)^3 = 1458*a^9 = 2*9^3*a^9;
(36*a^3 - t^3)^3 + (36*a^3 + t^3)^3 + (-6*a*t^2)^3 = 93312*a^9 = 2*36^3*a^9;
((3*a^3)*t - 9*t^4)^3 + (9*t^4)^3 + (a^4 - 9*a*t^3)^3 = a^12;
((9*a^3)*t - t^4)^3 + (t^4)^3 + (9*a^4 - 3*a*t^3)^3 = 729*a^12 = 9^3*a^12.

Examples

			128 is a term, because (4 - 3*(2*n - 1)^3, 4 + 3*(2*n - 1)^3, -3*(2*n - 1)^2) is a nontrivial primitive parametric solution of x^3 + y^3 + z^3 = 128.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = 2*{1, 5, 7, 11, 13}^9;
    t2 = 128*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*{1, 3, 5, 7, 9}^9;
    t4 = 93312*{1, 2, 3, 4, 5}^9;
    t5 = {1, 2, 4, 5, 7}^12;
    t6 = 729*{1, 2, 3, 4, 5}^12;
    Take[Union[t1, t2, t3, t4, t5, t6], 27]

A338933 Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

2, 16, 128, 1024, 1458, 8192, 11664, 31250, 65536, 93312, 235298, 524288, 746496, 1062882, 2000000, 3543122, 3906250, 5971968, 9653618, 15059072, 22781250, 28697814, 33554432, 47775744, 48275138, 68024448, 80707214, 94091762, 128000000, 171532242, 226759808
Offset: 1

Views

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^2 - a*t - t^2)^3 + (a^2 + a*t - t^2)^3 + 2*(t^2)^3 = 2*a^6
(a^3 - 3*t^3)^3 + (a^3 + 3*t^3) + 2*(-3*a*t^2)^3 = 2*a^9;
(9*a^3 - t^3)^3 + (9*a^3 + t^3)^3 + 2*(-3*a*t^2)^3 = 1458*a^9;
(6*a^3*t - 72*t^4)^3 + (72*t^4)^3 + 2*(a^4 - 36*a*t^3)^3 = 2*a^12;
(6*a^3*t - 9*t^4)^3 + (9*t^4)^3 + 2*(2*a^4 - 9*a*t^3)^3 = 16*a^12 = 2*2^3*a^12;
(18*a^3*t - 8*t^4)^3 + (8*t^4)^3 + 2*(9*a^4 - 12*a*t^3)^3 = 1458*a^12 = 2*9^3*a^12;
(18*a^3*t - t^4)^3 + (t^4)^3 + 2*(18*a^4 - 3*a*t^3)^3 = 11664*a^12 = 2*18^3*a^12.

Examples

			16 is a term, because when t is an integer, (6*(2*t + 1) - 9*(2*t + 1)^4, 9*(2*t + 1)^4, 2 - 9*(2*t + 1)^3) is a nontrivial primitive parametric solution of x^3 + y^3 + 2*z^3 = 16.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = 2*Range[23]^6;
    t2 = 2*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*Range[4]^9;
    t4 = 2*{1, 5}^12;
    t5 = 16*{1, 2, 4}^12;
    t6 = 1458*{1, 3}^12;
    t7 = 11664*{1, 2, 3}^12;
    Take[Union[t1, t2, t3, t4, t5, t6, t7], 31]

Extensions

Missing terms 1024 and 746496 added by XU Pingya, Mar 14 2022
Showing 1-4 of 4 results.