A173627 Primes p such that p^2 + 6, p^2 + 12 and p^2 + 18 are all prime.
5, 19, 61, 971, 1451, 2711, 3061, 3449, 6011, 15139, 15241, 21821, 27851, 39839, 51749, 62459, 75679, 76081, 82591, 97001, 121039, 121441, 122299, 135581, 161569, 162671, 196681, 196831, 200881, 214741, 217271, 222931, 242069, 243119, 254161
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1800
Crossrefs
Cf. A062718 (p and p^2 + 6 are both prime).
Programs
-
Magma
[p: p in PrimesUpTo(600000)|IsPrime(p^2+6) and IsPrime(p^2+12) and IsPrime(p^2+18)] // Vincenzo Librandi, Dec 13 2010
-
Mathematica
okQ[n_]:=Module[{p2=n^2},And@@PrimeQ[{p2+6,p2+12,p2+18}]]; Select[Prime[Range[30000]],okQ] (* Harvey P. Dale, Dec 18 2010 *)
-
PARI
isok(p) = isprime(p) && isprime(p^2+6) && isprime(p^2+12) && isprime(p^2+18); \\ Michel Marcus, Sep 08 2018
Comments