cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173645 Partial sums of floor(n^2/11).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 15, 22, 31, 42, 55, 70, 87, 107, 130, 156, 185, 217, 253, 293, 337, 385, 437, 493, 554, 620, 691, 767, 848, 935, 1028, 1127, 1232, 1343, 1460, 1584, 1715, 1853, 1998, 2150, 2310, 2478, 2654, 2838, 3030, 3230, 3439, 3657, 3884
Offset: 0

Views

Author

Mircea Merca, Nov 24 2010

Keywords

Examples

			a(6) = 6 = 0 + 0 + 0 + 0 + 1 + 2 + 3.
		

Programs

  • Magma
    [ &+[Floor(k^2/11): k in [0..n]]: n in [0..60] ];  // Bruno Berselli, Apr 28 2011
    
  • Maple
    A173645(n):=round((2*n^3+3*n^2-23*n-12)/66)
  • Mathematica
    Accumulate[Floor[Range[0,50]^2/11]] (* Harvey P. Dale, Sep 23 2015 *)
  • PARI
    vector(60, n, n--; (2*n^3+3*n^2-23*n+18)\66) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    [floor((2*n^3+3*n^2-23*n+18)/66) for n in (0..60)] # G. C. Greubel, Jul 02 2019

Formula

a(n) = round((2*n^3 + 3*n^2 - 23*n - 12)/66).
a(n) = floor((2*n^3 + 3*n^2 - 23*n + 18)/66).
a(n) = ceiling((2*n^3 + 3*n^2 - 23*n - 42)/66).
a(n) = a(n-11) + (n-5)^2 + 6, n > 10.
From R. J. Mathar, Nov 24 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14).
G.f.: x^4*(x+1)*(x^4 - x^3 + x^2 - x + 1) / ((x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4). (End)