cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173653 Partial sums of floor(n^2/10) (A056865).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 16, 24, 34, 46, 60, 76, 95, 117, 142, 170, 202, 238, 278, 322, 370, 422, 479, 541, 608, 680, 758, 842, 932, 1028, 1130, 1238, 1353, 1475, 1604, 1740, 1884, 2036, 2196, 2364, 2540, 2724, 2917, 3119, 3330, 3550, 3780, 4020, 4270, 4530, 4800
Offset: 0

Views

Author

Mircea Merca, Nov 24 2010

Keywords

Examples

			a(9) = 0+0+0+0+1+2+3+4+6+8 = 24.
		

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} floor(k^2/10).
a(n) = a(n-10)+(n-5)^2+n-1 , n>9.
From R. J. Mathar, Nov 24 2010: (Start)
G.f.: x^4*(1+x^4) / ( (1+x)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x-1)^4 ).
a(n)= +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-10) -3*a(n-11) +3*a(n-12) -a(n-13). (End)
a(n) = floor((2*n^3+3*n^2-26*n+24)/60) + floor((n+1)/10) - floor((n+3)/10). - Hoang Xuan Thanh, Jun 02 2025