cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173704 Partial sums of floor(n^3/2).

Original entry on oeis.org

0, 0, 4, 17, 49, 111, 219, 390, 646, 1010, 1510, 2175, 3039, 4137, 5509, 7196, 9244, 11700, 14616, 18045, 22045, 26675, 31999, 38082, 44994, 52806, 61594, 71435, 82411, 94605, 108105, 123000, 139384, 157352, 177004, 198441, 221769, 247095, 274531, 304190, 336190, 370650, 407694, 447447, 490039, 535601, 584269, 636180, 691476, 750300, 812800
Offset: 0

Views

Author

Mircea Merca, Nov 25 2010

Keywords

Comments

Partial sums of A036487.

Examples

			a(4) = floor(1/2) + floor(8/2) + floor(27/2) + floor(64/2) = 49.
		

Crossrefs

Cf. A036487.

Programs

  • Magma
    [Round((n^4+2*n^3+n^2-2*n)/8): n in [0..40]]; // Vincenzo Librandi, Jun 22 2011
  • Maple
    A173704 := proc(n) (n^4+2*n^3+n^2-2*n-1+(-1)^n)/8 ; end proc:
  • Mathematica
    Table[Sum[Floor[k^3/2], {k, 0, n}], {n,0,50}] (* G. C. Greubel, Nov 23 2016 *)
    Accumulate[Floor[Range[0,50]^3/2]] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = Sum_{k=0..n} floor(k^3/2).
a(n) = round((n^4+2*n^3+n^2-2*n)/8).
a(n) = round((n^4+2*n^3+n^2-2*n-1)/8).
a(n) = floor((n^4+2*n^3+n^2-2*n)/8).
a(n) = ceiling((n-1)*(n+1)*(n^2+2*n+2)/8).
a(n) = a(n-2)+(n-1)*(2*n^2-n+2)/2, n>1.
From R. J. Mathar, Nov 26 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: -x^2*(4+x+x^2) / ( (1+x)*(x-1)^5 ).
a(n) = (n^4 + 2*n^3 + n^2 - 2*n - 1 + (-1)^n)/8. (End)

Extensions

Maple program replaced by R. J. Mathar, Nov 26 2010