cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A093174 Primes of the form 40*R_k + 1, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

41, 4441, 44444444441, 4444444444444444444444444441, 4444444444444444444444444444444444444444444444444444441, 4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441
Offset: 1

Views

Author

Rick L. Shepherd, Mar 27 2004

Keywords

Comments

Primes of the form (4*10^k - 31)/9. - Vincenzo Librandi, Nov 16 2010

Crossrefs

Cf. A056681 (corresponding k), A173768.

Extensions

Edited by N. J. A. Sloane, Feb 26 2010

A104659 Number of distinct prime divisors of 44...441 (with n 4s).

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 4, 2, 1, 5, 3, 2, 6, 3, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 5, 1, 2, 6, 4, 4, 6, 4, 4, 4, 5, 4, 8, 4, 4, 7, 3, 2, 7, 3, 7, 4, 6, 3, 4, 6, 2, 6, 1, 4, 7, 2, 5, 4, 4, 4, 6, 4, 2, 3, 6, 3, 5, 4, 3, 11, 5, 4, 4, 5, 7, 3, 4, 3, 5, 4, 4, 3, 3, 6, 8, 3, 4, 4, 2, 6, 6, 1, 7, 8, 4, 4, 7, 4, 6, 6, 4, 4, 5, 6
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 21 2005, extended Aug 08 2010

Keywords

Comments

There are very few primes in this sequence. 41 appears as the smallest prime divisor frequently. There are many semiprimes.
41 is prime.
4441 is prime.
44444 444441 is prime.
4444 444444 444444 444444 444441 is prime.
4444444444444444444444444444444444444444444444444444441 is prime.
Computed using www.alpertron.com.ar/ECM.HTM

Examples

			The number of distinct prime divisors of 441 is 2.
The number of distinct prime divisors of 44444444444444444444444444444441 is four.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ FactorInteger[(4*10^(n + 1) - 31)/9]; Array[f, 105] (* Robert G. Wilson v, Aug 09 2010 *)
    PrimeNu/@Rest[FromDigits/@Table[PadLeft[{1},n,4],{n,110}]] (* Harvey P. Dale, Mar 16 2012 *)

Formula

a(n) = A001221(A173768(n+1)). - Amiram Eldar, Jan 24 2020

Extensions

a(32) - a(105) from Robert G. Wilson v, Aug 09 2010

A309595 Digits of the 10-adic integer (-31/9)^(1/3).

Original entry on oeis.org

1, 8, 0, 1, 1, 8, 6, 6, 4, 1, 6, 0, 3, 9, 9, 0, 9, 3, 8, 0, 7, 1, 6, 5, 5, 2, 0, 8, 8, 4, 6, 7, 9, 8, 3, 0, 6, 7, 0, 7, 4, 0, 5, 9, 9, 5, 2, 0, 6, 7, 8, 9, 7, 8, 7, 2, 1, 2, 0, 7, 4, 8, 8, 4, 3, 6, 0, 6, 8, 2, 1, 4, 2, 8, 6, 7, 0, 5, 7, 4, 9, 7, 7, 5, 8, 4, 5, 9, 5, 7, 8, 4, 7, 9, 4, 4, 3, 7, 9, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       1^3 == 1      (mod 10).
      81^3 == 41     (mod 10^2).
      81^3 == 441    (mod 10^3).
    1081^3 == 4441   (mod 10^4).
   11081^3 == 44441  (mod 10^5).
  811081^3 == 444441 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-31/9+O(2^N))^(1/3), 2^N), Mod((-31/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309595(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 + 31)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309595(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 31) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
Showing 1-3 of 3 results.