cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A223077 Positive integers, written in base 3, with the property that if the base-3 representation is reversed the result is twice the original number.

Original entry on oeis.org

1012, 10212, 102212, 1022212, 10121012, 10222212, 101201012, 102222212, 1012001012, 1021210212, 1022222212, 10120001012, 10212010212, 10222222212, 101200001012, 101210121012, 102120010212, 102212102212, 102222222212, 1012000001012, 1012102121012, 1021200010212, 1022120102212, 1022222222212
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2013

Keywords

Comments

For the decimal representations of these same numbers see A173951.
Theorem: The number of terms of length n is equal to A103609(n-2).

Crossrefs

Programs

  • Mathematica
    b3rQ[n_]:=FromDigits[Reverse[IntegerDigits[n]],3]/FromDigits[ IntegerDigits[ n],3] ==2; Select[FromDigits/@Tuples[{0,1,2},13],b3rQ]//Quiet (* Harvey P. Dale, Jun 10 2018 *)

A173952 a(1)=32 and, for n > 1, a(n) = 9*a(n-1) + 32.

Original entry on oeis.org

32, 320, 2912, 26240, 236192, 2125760, 19131872, 172186880, 1549681952, 13947137600, 125524238432, 1129718145920, 10167463313312, 91507169819840, 823564528378592, 7412080755407360, 66708726798666272, 600378541187996480
Offset: 1

Views

Author

John W. Layman, Mar 03 2010

Keywords

Comments

It appears that all terms of this sequence are also terms of A173951.
Also, it appears that a(n) has the base-3 representation 1,0,2^(2n-2),1,2 where 2^k denotes k consecutive 2's.

Crossrefs

Cf. A173951.

Programs

Formula

From R. J. Mathar, Mar 04 2010: (Start)
a(n) = 4*(9^n-1) = 4*A024101(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 32*x/ ((9*x-1) * (x-1)). (End)

A223078 Positive integers with the property that if the base-4 representation is reversed the result is three times the original number.

Original entry on oeis.org

75, 315, 1275, 5115, 19275, 20475, 76875, 81915, 307275, 322875, 327675, 1228875, 1290555, 1310715, 4915275, 4934475, 5161275, 5223675, 5242875, 19660875, 19741515, 20644155, 20890875, 20971515, 78643275, 78720075, 78969675, 82575675, 82652475, 83559675
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2013

Keywords

Comments

From Robert Israel, Apr 23 2019: (Start)
All terms are divisible by 15.
If x is a term and x < 4^k, then x*(4^k+1) is a term. In particular the sequence is infinite. (End)

Crossrefs

Programs

  • Maple
    rev4:= proc(n) local L,i;
      L:= convert(n,base,4);
      add(L[-i]*4^(i-1),i=1..nops(L))
    end proc:
    Res:= NULL:
    for d from 2 to 15 do
      d1:= ceil(d/2); d2:= d-d1;
      for a from 4^(d1-1) to 4^d1/3 do
         b:= rev4(a)/3 mod 4^d2;
         x:= 4^d2*a+b;
         if rev4(x) = 3*x then Res:= Res, x; fi
    od od:
    Res; # Robert Israel, Apr 23 2019
  • Mathematica
    Select[Range[84*10^6],3#==FromDigits[Reverse[IntegerDigits[#,4]],4]&] (* Harvey P. Dale, Mar 03 2018 *)

Extensions

More terms from Alois P. Heinz, Mar 14 2013

A223079 Positive integers, written in base 4, with the property that if the base-4 representation is reversed the result is three times the original number.

Original entry on oeis.org

1023, 10323, 103323, 1033323, 10231023, 10333323, 102301023, 103333323, 1023001023, 1032310323, 1033333323, 10230001023, 10323010323, 10333333323, 102300001023, 102310231023, 103230010323, 103323103323, 103333333323
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2013

Keywords

Comments

For the decimal representations of these numbers see A223078.

Crossrefs

Showing 1-4 of 4 results.