cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174029 a(n) = 3*(3*n+1)*(5 - (-1)^n)/4.

Original entry on oeis.org

3, 18, 21, 45, 39, 72, 57, 99, 75, 126, 93, 153, 111, 180, 129, 207, 147, 234, 165, 261, 183, 288, 201, 315, 219, 342, 237, 369, 255, 396, 273, 423, 291, 450, 309, 477, 327, 504, 345, 531, 363, 558, 381, 585, 399, 612, 417, 639, 435, 666, 453
Offset: 0

Views

Author

Paul Curtz, Mar 06 2010

Keywords

Comments

All entries are multiples of 3.

Programs

  • Magma
    [3*(3*n+1)*(5-(-1)^n)/4: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{0,2,0,-1},{3,18,21,45},60] (* Harvey P. Dale, Mar 19 2015 *)
  • PARI
    vector(50, n, n--; 3*(3*n+1)*(5-(-1)^n)/4) \\ G. C. Greubel, Nov 02 2018

Formula

a(2n) = 18*n + 3 = 3*A016921(n);
a(2n+1) = 27*n + 18 = A124388(n).
a(n) = A064680(3n) + A064680(3n+1) + A064680(3n+2).
G.f.: ( 3 + 18*x + 15*x^2 + 9*x^3 ) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Jul 02 2011
a(n) = 2*a(n-2) - a(n-4); a(0)=3, a(1)=18, a(2)=21, a(3)=45. - Harvey P. Dale, Mar 19 2015
E.g.f.: (3/4)*(5*(1+3*x)*exp(x) - (1-3*x)*exp(-x)). - G. C. Greubel, Nov 02 2018