A128720 Number of paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).
1, 1, 3, 6, 16, 40, 109, 297, 836, 2377, 6869, 20042, 59071, 175453, 524881, 1579752, 4780656, 14536878, 44394980, 136107872, 418757483, 1292505121, 4001039563, 12418772656, 38641790001, 120510911885, 376628460529, 1179376013552, 3699860515924, 11626784875214
Offset: 0
Keywords
Examples
a(3)=6 because we have hhh, hH, Hh, hUD, UhD and UDh. G.f. = 1 + x + 3*x^2 + 6*x^3 + 16*x^4 + 40*x^5 + 109*x^6 + 297*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (first 101 terms from Vincenzo Librandi)
- Paul Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences , J. Int. Seq. 13 (2010) #10.7.2.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv:1107.5490 [math.CO], 2011.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Emeric Deutsch, Emanuele Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- P. Rajkovic, Paul Barry, and N. Savic, Number Sequences in an Integral Form with a Generalized Convolution Property and Somos-4 Hankel Determinants, Math. Balkanica, Vol. 26 (2012), Fasc. 1-2.
Programs
-
Maple
a[0]:=1: a[1]:=1: for n from 2 to 30 do a[n]:=a[n-1]+a[n-2]+add(a[j]*a[n-2-j], j=0..n-2) end do: seq(a[n],n=0..30); G:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=0..30);
-
Mathematica
Table[Sum[Binomial[2k,k]/(k+1)Sum[Binomial[n-j,2k]Binomial[n-j-2k,j],{j,0,n/2}],{k,0,n/2}],{n,0,12}] (* Emanuele Munarini, May 05 2011 *)
-
Maxima
makelist(sum(binomial(2*k,k)/(k+1)*sum(binomial(n-j,2*k)*binomial(n-j-2*k,j),j,0,n/2),k,0,n/2),n,0,12); /* Emanuele Munarini, May 05 2011 */
Formula
a(n) = Sum_{j=0..floor(n/2)} binomial(n-j, j)*m(n-2j), where m(k)=A001006(k) are the Motzkin numbers.
G.f. = G satisfies z^2*G^2 - (1-z-z^2)*G + 1 = 0.
G.f. = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c(z) = (1-sqrt(1-4z))/(2z) is the Catalan function.
a(n) = a(n-1) + a(n-2) + Sum_{j=0..n-2} a(j)*a(n-2-j), a(0) = a(1) = 1.
G.f.: (1/(1-x-x^2))*c(x^2/(1-x-x^2)^2) = (1/(1-x^2))*m(x/(1-x^2)), c(x) the g.f. of A000108, m(x) the g.f. of A001006. - Paul Barry, Mar 18 2010
Let A(x) be the g.f., then B(x) = 1 + x*A(x) = 1 + 1*x + 1*x^2 + 3*x^3 + 6*x^4 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x-x^2) (continued fraction); more generally B(x)=C(x/(1+x-x^2)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = Sum_{k=0..floor(n/2)} (binomial(2*k,k)/(k+1))*Sum_{j=0..floor(n/2)} binomial(n-j, 2*k)*binomial(n-j-2*k, j). - Emanuele Munarini, May 05 2011
D-finite with recurrence: (n+2)*a(n) + (-2*n-1)*a(n-1) + 5*(-n+1)*a(n-2) + (2*n-5)*a(n-3) + (n-4)*a(n-4) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1 - x - x^2 - sqrt(1 - 2*x - 5*x^2 + 2*x^3 + x^4))/(2*x^2) = 1/Q(0), where Q(k) = 1 - x - x^2 - x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) ~ sqrt(78+22*sqrt(13)) * ((3+sqrt(13))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
Comments