A174239 a(n) = (3*n + 1 + (-1)^n*(n+3))/4.
1, 0, 3, 1, 5, 2, 7, 3, 9, 4, 11, 5, 13, 6, 15, 7, 17, 8, 19, 9, 21, 10, 23, 11, 25, 12, 27, 13, 29, 14, 31, 15, 33, 16, 35, 17, 37, 18, 39, 19, 41, 20, 43, 21, 45, 22, 47, 23, 49, 24, 51, 25, 53, 26, 55, 27, 57, 28, 59, 29, 61, 30, 63, 31, 65, 32, 67, 33, 69, 34, 71, 35, 73, 36, 75, 37, 77, 38, 79, 39, 81
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Cf. A004442.
Programs
-
Magma
[(3*n+1 +(-1)^n*(n+3))/4: n in [0..80]]; // Vincenzo Librandi, Feb 08 2011
-
Maple
A174239:=n->(3*n+1+(-1)^n*(n+3))/4: seq(A174239(n), n=0..100); # Wesley Ivan Hurt, Mar 21 2015
-
Mathematica
Table[(3 n + 1 + (-1)^n*(n + 3))/4, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 21 2015 *) LinearRecurrence[{0,2,0,-1},{1,0,3,1},90] (* Harvey P. Dale, Jul 16 2018 *)
Formula
a(2n) = 2n+1; a(2n+1) = n.
a(n) = 2*a(n-2) - a(n-4).
a(2n+1) - 2*a(2n) = -A016789(n+1).
a(2n+2) - 2*a(2n+1) = 3.
G.f.: ( 1+x^2+x^3 ) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 07 2011
Comments