cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174323 Numbers n such that omega(Fibonacci(n)) is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 11, 13, 17, 20, 23, 24, 27, 28, 29, 32, 43, 47, 52, 55, 74, 77, 80, 83, 84, 85, 87, 88, 91, 93, 96, 97, 100, 108, 115, 123, 131, 132, 137, 138, 143, 146, 149, 156, 157, 161, 163, 178, 184, 187, 189, 196, 197, 209, 211, 214, 215, 221, 222, 223, 232
Offset: 1

Views

Author

Michel Lagneau, Mar 15 2010

Keywords

Comments

Numbers n such that omega(A000045(n)) is a square, where omega(p) is the number of distinct prime factors of p (A001221). Remark: for the larger Fibonacci numbers F(n) (n > 300), the Maple program (below) is very slow. So we use a two-step process: factoring F(n) with the elliptic curve method, and then calculate the distinct prime factors.

Examples

			omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0,
omega(Fibonacci(3)) = omega(2) = 1,
omega(Fibonacci(20)) = omega(6765) = 4,
omega(Fibonacci(80)) = omega(23416728348467685) = 9.
		

References

  • Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors of n-th Fibonacci number, with multiplicity).
Cf. A022307 (number of distinct prime factors of n-th Fibonacci number), A086597 (number of primitive prime factors).

Programs

  • Magma
    [k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // Marius A. Burtea, Oct 15 2019
  • Maple
    with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)[2]): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od:
    # alternative:
    P[1]:= {}: count:= 1: res:= 1:
    for i from 2 to 300 do
      pn:= map(t -> i/t, numtheory:-factorset(i));
      Cprimes:= `union`(seq(P[t],t=pn));
      f:= combinat:-fibonacci(i);
      for p in Cprimes do f:= f/p^padic:-ordp(f,p) od;
      P[i]:= Cprimes union numtheory:-factorset(f);
      if issqr(nops(P[i])) then
         count:= count+1;
         res:= res, i;
      fi;
    od:
    res; # Robert Israel, Oct 13 2016
  • Mathematica
    Select[Range[200], IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* G. C. Greubel, May 16 2017 *)
  • PARI
    is(n)=issquare(omega(fibonacci(n))) \\ Charles R Greathouse IV, Oct 13 2016