A174323 Numbers n such that omega(Fibonacci(n)) is a square.
1, 2, 3, 4, 5, 6, 7, 11, 13, 17, 20, 23, 24, 27, 28, 29, 32, 43, 47, 52, 55, 74, 77, 80, 83, 84, 85, 87, 88, 91, 93, 96, 97, 100, 108, 115, 123, 131, 132, 137, 138, 143, 146, 149, 156, 157, 161, 163, 178, 184, 187, 189, 196, 197, 209, 211, 214, 215, 221, 222, 223, 232
Offset: 1
Keywords
Examples
omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0, omega(Fibonacci(3)) = omega(2) = 1, omega(Fibonacci(20)) = omega(6765) = 4, omega(Fibonacci(80)) = omega(23416728348467685) = 9.
References
- Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..258 (terms 1..200 from Robert Israel, derived from b-file for A022307)
- Blair Kelly, Fibonacci and Lucas Factorizations
- Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284.
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Wikipedia, Fibonacci number
Crossrefs
Programs
-
Magma
[k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // Marius A. Burtea, Oct 15 2019
-
Maple
with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)[2]): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od: # alternative: P[1]:= {}: count:= 1: res:= 1: for i from 2 to 300 do pn:= map(t -> i/t, numtheory:-factorset(i)); Cprimes:= `union`(seq(P[t],t=pn)); f:= combinat:-fibonacci(i); for p in Cprimes do f:= f/p^padic:-ordp(f,p) od; P[i]:= Cprimes union numtheory:-factorset(f); if issqr(nops(P[i])) then count:= count+1; res:= res, i; fi; od: res; # Robert Israel, Oct 13 2016
-
Mathematica
Select[Range[200], IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* G. C. Greubel, May 16 2017 *)
-
PARI
is(n)=issquare(omega(fibonacci(n))) \\ Charles R Greathouse IV, Oct 13 2016
Comments