A174441 Primes p such that the concatenations p//1331 and 1331//p are both prime numbers (for naturals see A174355).
53, 347, 431, 641, 647, 821, 1709, 1973, 2081, 2591, 2657, 2963, 4073, 4139, 4643, 4787, 5039, 5483, 5657, 6029, 6791, 6917, 6959, 7127, 7673, 8273, 8693, 8807, 8849, 9221, 9311, 9689, 10139, 10457, 11423, 12503, 12743, 13619, 13913, 14549
Offset: 1
Examples
531331 = prime(43928), 133153 = prime(12427) => p(1) = 53 = prime(16). 3471331 = prime(248286), 1331347 = prime(102237) => p(2) = 347 = prime(69). 139131331 = prime(7865788), 133113913 = prime(7544750) => p(39) = 13913 = prime(1645).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[2000]],AllTrue[{#*10^4+1331,1331*10^IntegerLength[ #]+#}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 08 2016 *)
-
PARI
isok(n) = isprime(n) && isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013
Comments