cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174363 Primes p such that 2*p^3 -+ 3 are also prime.

Original entry on oeis.org

2, 13, 1223, 2357, 4013, 4027, 4507, 5903, 8713, 9623, 10663, 11717, 12757, 12983, 13883, 15877, 16103, 16787, 16823, 16883, 18097, 22697, 23357, 24677, 26107, 27953, 28603, 30313, 31327, 34147, 35617, 35933, 41183, 44893, 46687, 46817, 48247, 50417, 52963, 54083
Offset: 1

Views

Author

Vincenzo Librandi, Mar 17 2010

Keywords

Comments

Intersection of A153507 and A243630. - Felix Fröhlich, Nov 27 2019

Examples

			For p=2, 2*2^3 -+ 3 = (13, 19), both prime, so 2 is a term of the sequence.
For p=13, 2*13^3 -+ 3 = (4391, 4397), both prime, so 13 is a term of the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(100000)|IsPrime(2*p^3-3) and IsPrime(2*p^3+3)]
    
  • Maple
    select(p -> andmap(isprime, [p, 2*p^3+3, 2*p^3-3]), [seq(p, p=1.. 10^5)]); # K. D. Bajpai, Nov 28 2019
  • Mathematica
    Select[Prime[Range[5000]],And@@PrimeQ[2 #^3+{3,-3}]&] (* Harvey P. Dale, Jan 25 2013 *)
  • PARI
    forprime(p=1, 55000, if(ispseudoprime(2*p^3-3) && ispseudoprime(2*p^3+3), print1(p, ", "))) \\ Felix Fröhlich, Nov 27 2019