A174398 Numbers that are congruent to {1, 4, 5, 8} mod 12.
1, 4, 5, 8, 13, 16, 17, 20, 25, 28, 29, 32, 37, 40, 41, 44, 49, 52, 53, 56, 61, 64, 65, 68, 73, 76, 77, 80, 85, 88, 89, 92, 97, 100, 101, 104, 109, 112, 113, 116, 121, 124, 125, 128, 133, 136, 137, 140, 145, 148, 149, 152, 157, 160, 161, 164, 169, 172, 173
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[n : n in [0..200] | n mod 12 in [1, 4, 5, 8]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
seq(3*n +(-1)^floor(n/2), n=0..50);
-
Mathematica
Table[(1+I)*(3*(n-n*I+I-1)+I^(1-n)-I^n)/2, {n, 60}] (* Wesley Ivan Hurt, Jun 07 2016 *) Select[Range[200],MemberQ[{1,4,5,8},Mod[#,12]]&] (* or *) LinearRecurrence[ {2,-2,2,-1},{1,4,5,8},60] (* Harvey P. Dale, Aug 02 2020 *)
Formula
a(n) = 3*n - 3 + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: x*(1 + 2*x - x^2 + 4*x^3)/((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1 + i)*(3*(n - n*i + i - 1) + i^(1-n) - i^n)/2, where i=sqrt(-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 + log(2)/2. - Amiram Eldar, Dec 31 2021
Comments