cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174398 Numbers that are congruent to {1, 4, 5, 8} mod 12.

Original entry on oeis.org

1, 4, 5, 8, 13, 16, 17, 20, 25, 28, 29, 32, 37, 40, 41, 44, 49, 52, 53, 56, 61, 64, 65, 68, 73, 76, 77, 80, 85, 88, 89, 92, 97, 100, 101, 104, 109, 112, 113, 116, 121, 124, 125, 128, 133, 136, 137, 140, 145, 148, 149, 152, 157, 160, 161, 164, 169, 172, 173
Offset: 1

Views

Author

Gary Detlefs, Mar 18 2010

Keywords

Comments

Numbers k such that k*(k + 3)/4 + (k + 1)*(k + 2)/6 or k*(5*k + 3)/12 + 1/3 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..200] | n mod 12 in [1, 4, 5, 8]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    seq(3*n +(-1)^floor(n/2), n=0..50);
  • Mathematica
    Table[(1+I)*(3*(n-n*I+I-1)+I^(1-n)-I^n)/2, {n, 60}] (* Wesley Ivan Hurt, Jun 07 2016 *)
    Select[Range[200],MemberQ[{1,4,5,8},Mod[#,12]]&] (* or *) LinearRecurrence[ {2,-2,2,-1},{1,4,5,8},60] (* Harvey P. Dale, Aug 02 2020 *)

Formula

a(n) = 3*n - 3 + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: x*(1 + 2*x - x^2 + 4*x^3)/((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1 + i)*(3*(n - n*i + i - 1) + i^(1-n) - i^n)/2, where i=sqrt(-1).
a(2*k) = A092259(k), a(2*k-1) = A087445(k). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 + log(2)/2. - Amiram Eldar, Dec 31 2021