A176130
Lesser of a pair (p,p+4) of cousin primes whose arithmetic mean p+2 is a square number.
Original entry on oeis.org
7, 79, 223, 439, 1087, 13687, 56167, 74527, 91807, 95479, 149767, 184039, 194479, 199807, 263167, 314719, 328327, 370879, 651247, 804607, 1071223, 1147039, 1238767, 1306447, 1520287, 1535119, 1718719, 2442967, 2595319, 2614687
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 09 2010
(7 + 11)/2 = 3^2, 1st term is prime(4) = 7.
(79 + 83)/2 = 9^2, 2nd term is prime(22) = 79.
m = 173 = prime(40): 21st term is p = 1071223 = prime(83637), p+2 = 3^4 * 5^2 * 23^2.
60th term is p = 27029599 = prime(1684797): p+2 = 3^2 * 1733^2.
- L. E. Dickson, History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications 2005.
- H. Pieper, Zahlen aus Primzahlen. Eine Einfuehrung in die Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, 2. Aufl., 1984.
- A. Warusfel, Les nombres et leurs mystères, Edition du Seuil, Paris 1980.
-
Select[Range[1617]^2 - 2, And @@ PrimeQ[# + {0, 4}] &] (* Amiram Eldar, Dec 24 2019 *)
-
isok(n) = isprime(n) && isprime(n+4) && issquare(n+2) \\ Michel Marcus, Jul 22 2013
-
forstep(n=3,1e4,2,if(isprime(n^2-2)&&isprime(n^2+2),print1(n^2-2", "))) \\ Charles R Greathouse IV, Jul 23 2013
A176603
Smallest prime p of three consecutive primes (p,q,r) with p + q + r equal to a lower twin prime.
Original entry on oeis.org
11, 17, 19, 83, 101, 281, 347, 349, 379, 401, 547, 641, 701, 839, 1103, 1151, 1171, 1187, 1279, 1303, 1409, 1439, 1489, 1823, 2089, 2243, 2857, 2861, 2927, 2999, 3083, 3203, 3347, 3359, 3467, 4639, 5087, 5233, 5861, 5879, 5881, 5923, 5953, 6007, 6299, 6491
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 21 2010
11+13+17 = 41 = prime(13), 43 = prime(14), 11 is 1st term.
17+19+23 = 59 = prime(17), 61 = prime(18), 17 is 2nd term.
Detailed list:
11+13+17 = 41, 17+19+23 = 59, 19+23+29 = 71, 83+89+97 = 269,
101+103+107 = 311, 281+283+293 = 857, 347+349+353 = 1049,
349+353+359 = 1061, 379+383+389 = 1151, 401+409+419 = 1229,
547+557+563 = 1667, 641+643+647 = 1931, 701+709+719 = 2129,
839+853+857 = 2549, 1103+1109+1117 = 3329, 1151+1153+1163 = 3467,
1171+1181+1187 = 3539, 1187+1193+1201 = 3581, 1279+1283+1289 = 3851,
1303+1307+1319 = 3929, 1409+1423+1427 = 4259, 1439+1447+1451 = 4337,
1489+1493+1499 = 4481, 1823+1831+1847 = 5501, 2089+2099+2111 = 6299,
2243+2251+2267 = 6761, 2857+2861+2879 = 8597, 2861+2879+2887 = 8627,
2927+2939+2953 = 8819, 2999+3001+3011 = 9011.
- Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909.
-
Prime /@ Position[Plus @@@ Partition[ Prime[ Range[1000]], 3, 1] , ?(PrimeQ[#]&&PrimeQ[#+2] &)]//Flatten (* _Amiram Eldar, Dec 24 2019 *)
-
my(ppp=2,pp=3); forprime(p=5,6600,my(psum=ppp+pp+p); if(isprime(psum)&&isprime(psum+2), print1(ppp,", ")); ppp=pp; pp=p) \\ Hugo Pfoertner, Dec 24 2019
keyword:base removed, and sequence extended by
R. J. Mathar, Apr 23 2010
A178033
Lesser of a twin prime pair (p,p+2) such that permuting the digits of p and those of p+2 gives a different twin prime pair (q, q+2).
Original entry on oeis.org
281, 461, 641, 821, 1031, 1091, 1229, 1277, 1301, 1319, 1427, 1697, 1721, 1787, 1877, 2081, 2129, 2381, 2687, 2711, 2801, 3119, 3251, 3257, 3371, 3467, 3527, 3581, 3821, 3851, 4091, 4127, 4157, 4217, 4241, 4271, 4421, 4517, 4637, 4649, 4721, 4787, 4931, 4967, 5231, 5417, 5477, 5651
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 17 2010
281 is a term as 281 is the lesser of the twin prime pair 281,283, and after permuting 821, 823 is also a twin prime pair.
1229 is a term as (1229,1231) is a twin prime pair and after permuting (2129, 2131) is also a twin prime pair.
-
perm@n_ :=
Select[FromDigits@# & /@
DeleteCases[Rest@Permutations@IntegerDigits@n, _?(First@# == 0 &)],
PrimeQ];
Cases[{#, perm@# & /@ #} & /@
Cases[6*# + {-1, 1} & /@
Range@2000, {?PrimeQ ..}], {{x, }, {{__, a_, _}, {_, b_, _}} /; b - a == 2} :> x] (* Hans Rudolf Widmer, Oct 04 2024 *)
A176185
Numbers n with property that concatenation (2*n+1)//n of the decimals is a square.
Original entry on oeis.org
29, 76, 2289, 3796, 6369, 8756, 16736, 19696, 24900, 28484, 77529, 83761, 94169, 222889, 887556, 22228889, 88875556, 112594641, 368762025, 651177616
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 11 2010
n = 29 is a term: 2 * n + 1 = 59, 5929 = 59//29 = 77^2 is a perfect square.
n = 6369 is a term: 2 * n + 1 = 12739. 12739//6369 = 11287^2 is a perfect square.
- J. Buchmann, U. Vollmer: Binary Quadratic Forms, Springer, Berlin, 2007
- L. E. Dickson: History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications, 2005
-
isA176185 := proc(n)
digcat2(2*n+1,n) ; # of oeis.org/transforms.txt
issqr(%) ;
end proc:
for n from 1 do
if isA176185(n) then
print(n) ;
end if;
end do: # R. J. Mathar, May 21 2025
-
Select[Range[6512*10^5],IntegerQ[Sqrt[(2 #+1)10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Mar 05 2022 *)
Showing 1-4 of 4 results.
Comments