cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.
Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

Programs

  • Haskell
    a174466 n = sum $ zipWith3 (((*) .) . (*))
                      divs (map a000203 $ reverse divs) (map a000005 divs)
                      where divs = a027750_row n
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [&+[d*DivisorSigma(1, n div d)*#Divisors(d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    f[p_, e_] := ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d,0))}
    

Formula

Logarithmic derivative of A174465.
Dirichlet g.f.: zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011
a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. - Enrique Pérez Herrero, Jan 17 2013
G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018
Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3). - Amiram Eldar, May 26 2025