cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174497 Triangle read by rows: T(n,k) = prime(n) mod (prime(n+1) - prime(k)) for 0 < k < n+1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 7, 7, 1, 3, 0, 1, 3, 5, 1, 13, 13, 1, 3, 1, 1, 0, 1, 3, 5, 1, 5, 1, 19, 19, 1, 3, 7, 9, 1, 3, 23, 23, 23, 1, 5, 7, 11, 3, 5, 0, 1, 3, 5, 9, 11, 1, 5, 5, 1, 31, 31, 31, 1, 5, 7, 11, 13, 3, 7, 1, 37, 37, 1, 3, 7, 9, 13, 15, 1, 1, 7, 1, 0, 1, 3, 5, 9, 11, 15, 17, 1, 13, 5, 5, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 28 2010

Keywords

Examples

			Triangle begins as:
   0;
   0,  1;
   0,  1, 1;
   7,  7, 1, 3;
   0,  1, 3, 5, 1;
  13, 13, 1, 3, 1, 1;
   0,  0, 1, 0, 1, 1, 7;
   7,  1, 3, 0, 1, 3, 5, 1;
  13, 13, 1, 3, 1, 1, 0, 1, 3;
		

Crossrefs

Programs

  • Magma
    [NthPrime(n) mod (NthPrime(n+1) - NthPrime(k)): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 10 2024
  • Mathematica
    Table[Mod[Prime[n], Prime[n+1]-Prime[k]], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Apr 10 2024 *)
  • PARI
    T(n, k) = prime(n) % (prime(n+1)-prime(k));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 08 2017
    
  • Sage
    A174497 = flatten([[nth_prime(n) % (nth_prime(n+1)-nth_prime(k)) for k in range(1,n+1)] for n in range(1, 20)]) # D. S. McNeil, Nov 30 2010