cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174500 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003500(n)) ), where A003500(n) = (2+sqrt(3))^n + (2-sqrt(3))^n.

Original entry on oeis.org

1, 2, 1, 12, 1, 50, 1, 192, 1, 722, 1, 2700, 1, 10082, 1, 37632, 1, 140450, 1, 524172, 1, 1956242, 1, 7300800, 1, 27246962, 1, 101687052, 1, 379501250, 1, 1416317952, 1, 5285770562, 1, 19726764300, 1, 73621286642, 1, 274758382272, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 20 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A003500(n)) or, more explicitly,
L = 1/4 + 1/(2*14) + 1/(3*52) + 1/(4*194) + 1/(5*724) + 1/(6*2702) +...
so that L = 0.2937696594138291094177057532058145970820225289928...
then exp(L) = 1.3414748719687236691269115428250035920032300984596...
equals the continued fraction expansion given by this sequence:
exp(L) = [1;2,1,12,1,50,1,192,1,722,1,2700,1,10082,1,...]; i.e.,
exp(L) = 1 + 1/(2 + 1/(1 + 1/(12 + 1/(1 + 1/(50 + 1/(1 +...)))))).
Compare these partial quotients to A003500(n), n=1,2,3,...:
[4,14,52,194,724,2702,10084,37634,140452,524174,1956244,...].
		

Crossrefs

Programs

  • Mathematica
    a[n_?OddQ] = 1; a[n_?EvenQ] := a[n] = 4*a[n-2] - a[n-4] + 4;  a[2] = 2; a[4] = 12; Table[a[n], {n, 1, 41}] (* Jean-François Alcover, May 15 2014, after the first conjecture *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((2+sqrt(3))^m+(2-sqrt(3))^m))));contfrac(exp(L))[n]}

Formula

a(2n-1) = 1, a(2n) = A003500(n) - 2, for n>=1 [conjecture].
From Peter Bala, Jan 04 2013: (Start)
The above conjectures are correct. The real number exp( Sum_{n>=1} 1/(n*A003500(n)) ) is equal to the infinite product F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = 2 - sqrt(3). Ramanujan has given a continued fraction expansion for F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(N - sqrt(N^2 - 4))), N an integer greater than 3. The present case is when N = 4. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F((2 - sqrt(3))^k), k = 1, 2, 3, ...: if [1; c(1), 1, c(2), 1, c(3), 1, ...] denotes the present sequence then the simple continued fraction expansion of F((2 - sqrt(3))^k) is given by [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. (End)
a(n) = 5*a(n-2)-5*a(n-4)+a(n-6). G.f.: -x*(x^4+2*x^3-4*x^2+2*x+1) / ((x-1)*(x+1)*(x^4-4*x^2+1)). [Colin Barker, Jan 20 2013]