cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A005248 Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).

Original entry on oeis.org

2, 3, 7, 18, 47, 123, 322, 843, 2207, 5778, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 0

Views

Author

Keywords

Comments

Drop initial 2; then iterates of A050411 do not diverge for these starting values. - David W. Wilson
All nonnegative integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = +4 together with b(n)=A001906(n), n>=0. - Wolfdieter Lang, Aug 31 2004
a(n+1) = B^(n)AB(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 3=`10`, 7=`010`, 18=`0010`, 47=`00010`, ..., in Wythoff code. a(0) = 2 = B(1) in Wythoff code.
Output of Tesler's formula (as well as that of Lu and Wu) for the number of perfect matchings of an m X n Möbius band where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
Numbers having two 1's in their base-phi representation. - Robert G. Wilson v, Sep 13 2010
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 18 2013: (Start)
a(n) is also one half of the total number of round trips, each of length 2*n, on the graph P_4 (o-o-o-o) (the simple path with 4 points (vertices) and 3 lines (or edges)). See the array and triangle A198632 for the general case of the graph P_N (there N is n and the length is l=2*k).
O.g.f. for w(4,l) (with zeros for odd l): y*(d/dy)S(4,y)/S(4,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See also A198632 for a rewritten form. One half of this o.g.f. for x -> sqrt(x) produces the g.f. (2-3x)/(1-3x+x^2) given below. (End)
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy - 5. - Michel Lagneau, Feb 01 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 7xy + y^2 + 45 = 0. - Colin Barker, Feb 16 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 320 = 0. - Colin Barker, Feb 16 2014
a(n) are the numbers such that a(n)^2-2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
All sequences of this form, b(n+1) = 3*b(n) - b(n-1), regardless of initial values, which includes this sequence, yield this sequence as follows: a(n) = (b(j+n) + b(j-n))/b(j), for any j, except where b(j) = 0. Also note formula below relating this a(n) to all sequences of the form G(n+1) = G(n) + G(n-1). - Richard R. Forberg, Nov 18 2014
A non-simple continued fraction expansion for F(2n*(k+1))/F(2nk) k>=1 is a(n) + (-1)/(a(n) + (-1)/(a(n) + ... + (-1)/a(n))) where a(n) appears exactly k times (F(n) denotes the n-th Fibonacci number). E.g., F(16)/F(12) equals 7 + (-1)/(7 + (-1)/7). Furthermore, these a(n) are exactly the positive integers k such that the non-simple infinite continued fraction k + (-1)/(k + (-1)/(k + (-1)/(k + ...))) belongs to Q(sqrt(5)). Compare to Benoit Cloitre and Thomas Baruchel's comments at A002878. - Greg Dresden, Aug 13 2019
For n >= 1, a(n) is the number of cyclic up-down words of length 2*n over an alphabet of size 3. - Sela Fried, Apr 08 2025

Examples

			G.f. = 2 + 3*x + 7*x^2 + 18*x^3 + 47*x^4 + 123*x^5 + 322*x^6 + 843*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032, A002878 (odd-indexed Lucas numbers), A001906 (Chebyshev S(n-1, 3)), a(n) = sqrt(4+5*A001906(n)^2), A228842.
a(n) = A005592(n)+1 = A004146(n)+2 = A065034(n)-1.
First differences of A002878. Pairwise sums of A001519. First row of array A103997.
Cf. A153415, A201157. Also Lucas(k*n): A000032 (k = 1), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Haskell
    a005248 n = a005248_list !! n
    a005248_list = zipWith (+) (tail a001519_list) a001519_list
    -- Reinhard Zumkeller, Jan 11 2012
  • Magma
    [Lucas(2*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    a:= n-> (<<2|3>>. <<3|1>, <-1|0>>^n)[1$2]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 31 2008
    with(combinat): seq(5*fibonacci(n)^2+2*(-1)^n, n= 0..26);
  • Mathematica
    a[0] = 2; a[1] = 3; a[n_] := 3a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Jan 30 2004 *)
    Fibonacci[1 + 2n] + 1/2 (-Fibonacci[2n] + LucasL[2n]) (* Tesler. Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{3, -1}, {2, 3}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    LucasL[Range[0,60,2]] (* Harvey P. Dale, Sep 30 2014 *)
  • PARI
    {a(n) = fibonacci(2*n + 1) + fibonacci(2*n - 1)}; /* Michael Somos, Jun 23 2002 */
    
  • PARI
    {a(n) = 2 * subst( poltchebi(n), x, 3/2)}; /* Michael Somos, Jun 28 2003 */
    
  • Sage
    [lucas_number2(n,3,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = Fibonacci(2*n-1) + Fibonacci(2*n+1).
G.f.: (2-3*x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n, 3) - S(n-2, 3) = 2*T(n, 3/2) with S(n-1, 3) = A001906(n) and S(-2, x) = -1. U(n, x)=S(n, 2*x) and T(n, x) are Chebyshev's U- and T-polynomials.
a(n) = a(k)*a(n - k) - a(n - 2k) for all k, i.e., a(n) = 2*a(n) - a(n) = 3*a(n - 1) - a(n - 2) = 7*a(n - 2) - a(n - 4) = 18*a(n - 3) - a(n - 6) = 47*a(n - 4) - a(n - 8) etc., a(2n) = a(n)^2 - 2. - Henry Bottomley, May 08 2001
a(n) = A060924(n-1, 0) = 3*A001906(n) - 2*A001906(n-1), n >= 1. - Wolfdieter Lang, Apr 26 2001
a(n) ~ phi^(2*n) where phi=(1+sqrt(5))/2. - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(0)=2, a(1)=3, a(n) = 3*a(n-1) - a(n-2) = a(-n). - Michael Somos, Jun 28 2003
a(n) = phi^(2*n) + phi^(-2*n) where phi=(sqrt(5)+1)/2, the golden ratio. E.g., a(4)=47 because phi^(8) + phi^(-8) = 47. - Dennis P. Walsh, Jul 24 2003
With interpolated zeros, trace(A^n)/4, where A is the adjacency matrix of path graph P_4. Binomial transform is then A049680. - Paul Barry, Apr 24 2004
a(n) = (floor((3+sqrt(5))^n) + 1)/2^n. - Lekraj Beedassy, Oct 22 2004
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2^n (Note: substituting the number 1 for 3 in the last equation gives A000204, substituting 5 for 3 gives A020876). - Creighton Dement, Apr 19 2005
a(n) = (1/(n+1/2))*Sum_{k=0..n} B(2k)*L(2n+1-2k)*binomial(2n+1, 2k) where B(2k) is the (2k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = term (1,1) in the 1 X 2 matrix [2,3] . [3,1; -1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = 2*cosh(2*n*psi), where psi=log((1+sqrt(5))/2). - Al Hakanson, Mar 21 2009
From Sarah-Marie Belcastro, Jul 04 2009: (Start)
a(n) - (a(n) - F(2n))/2 - F(2n+1) = 0. (Tesler)
Product_{r=1..n} (1 + 4*(sin((4r-1)*Pi/(4n)))^2). (Lu/Wu) (End)
a(n) = Fibonacci(2n+6) mod Fibonacci(2n+2), n > 1. - Gary Detlefs, Nov 22 2010
a(n) = 5*Fibonacci(n)^2 + 2*(-1)^n. - Gary Detlefs, Nov 22 2010
a(n) = A033888(n)/A001906(n), n > 0. - Gary Detlefs, Dec 26 2010
a(n) = 2^(2*n) * Sum_{k=1..2} (cos(k*Pi/5))^(2*n). - L. Edson Jeffery, Jan 21 2012
From Peter Bala, Jan 04 2013: (Start)
Let F(x) = Product_{n>=0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(3 - sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.31829 56058 81914 31334 ... = 2 + 1/(3 + 1/(7 + 1/(18 + ...))).
Also F(-alpha) = 0.64985 97768 07374 32950 has the continued fraction representation 1 - 1/(3 - 1/(7 - 1/(18 - ...))) and the simple continued fraction expansion 1/(1 + 1/((3-2) + 1/(1 + 1/((7-2) + 1/(1 + 1/((18-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((3^2-4) + 1/(1 + 1/((7^2-4) + 1/(1 + 1/((18^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + 1/2*F(alpha)/F(-alpha) = 1.5142923542... has the simple continued fraction expansion 1 + 1/((3 - 2) + 1/(1 + 1/((18 - 2) + 1/(1 + 1/(123 - 2) + 1/(1 + ...))))). (End)
G.f.: (W(0)+6)/(5*x), where W(k) = 5*x*k + x - 6 + 6*x*(5*k-9)/W(k+1) (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1. Compare with A001906, A002878 and A023039. - Peter Bala, Nov 29 2013
0 = a(n) * a(n+2) - a(n+1)^2 - 5 for all n in Z. - Michael Somos, Aug 24 2014
a(n) = (G(j+2n) + G(j-2n))/G(j), for n >= 0 and any j, positive or negative, except where G(j) = 0, and for any sequence of the form G(n+1) = G(n) + G(n-1) with any initial values for G(0), G(1), including non-integer values. G(n) includes Lucas, Fibonacci. Compare with A081067 for odd number offsets from j. - Richard R. Forberg, Nov 16 2014
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 5*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From J. M. Bergot, Oct 28 2015: (Start)
For n>0, a(n) = F(n-1) * L(n) + F(2*n+1) - (-1)^n with F(k) = A000045(k).
For n>1, a(n) = F(n+1) * L(n) + F(2*n-1) - (-1)^n.
For n>2, a(n) = 5*F(2*n-3) + 2*L(n-3) * L(n) + 8*(-1)^n. (End)
For n>1, a(n) = L(n-2)*L(n+2) -7*(-1)^n. - J. M. Bergot, Feb 10 2016
a(n) = 6*F(n-1)*L(n-1) - F(2*n-6) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Apr 21 2017
a(n) = F(2*n) + 2*F(n-1)*L(n) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, May 01 2017
E.g.f.: exp(4*x/(1+sqrt(5))^2) + exp((1/4)*(1+sqrt(5))^2*x). - Stefano Spezia, Aug 13 2019
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(2*n+2) - F(2*n-2) = A001906(n+1) - A001906(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^2 = [1, 1; 1, 2].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 1/a(n) ) = 1/5.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 3/(a(n) + 2/(a(n))) ) = 1/6.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 9/(a(n) + 4/(a(n) + 1/(a(n)))) ) = 1/9.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. for A001906. (End)
a(n) = n + 2 + Sum_{k=1..n-1} k*a(n-k). - Yu Xiao, May 30 2020
Sum_{n>=1} 1/a(n) = A153415. - Amiram Eldar, Nov 11 2020
Sum_{n>=0} 1/(a(n) + 3) = (2*sqrt(5) + 1)/10 (André-Jeannin, 1991). - Amiram Eldar, Jan 23 2022
a(n) = 2*cosh(2*n*arccsch(2)) = 2*cosh(2*n*asinh(1/2)). - Peter Luschny, May 25 2022
a(n) = (5/2)*(Sum_{k=-n..n} binomial(2*n, n+5*k)) - (1/2)*4^n. - Greg Dresden, Jan 05 2023
a(n) = Sum_{k>=0} Lucas(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025

Extensions

Additional comments from Michael Somos, Jun 23 2001

A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
Offset: 0

Views

Author

Keywords

Comments

a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
  • Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
  • Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Haskell
    a003500 n = a003500_list !! n
    a003500_list = 2 : 4 : zipWith (-)
       (map (* 4) $ tail a003500_list) a003500_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[2,4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
  • Maple
    A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
    end proc;
  • Mathematica
    a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
    LinearRecurrence[{4,-1},{2,4},30] (* Harvey P. Dale, Aug 20 2011 *)
    Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
    
  • Sage
    [lucas_number2(n,4,1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024

Extensions

More terms from James Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002

A003499 a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.

Original entry on oeis.org

2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
Offset: 0

Views

Author

Keywords

Comments

Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.

Programs

  • GAP
    a:=[2,6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n,0,25}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
    LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    CoefficientList[Series[(2-6x)/(1-6x+x^2), {x,0,25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
    (* From Eric W. Weisstein, Apr 17 2018 *)
    Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n,0,25}]//Expand
    Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n,0,25}]//FullSimplify
    Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
    2*ChebyshevT[Range[0, 25], 3] (* End *)
  • PARI
    a(n)=2*real((3+quadgen(32))^n)
    
  • PARI
    a(n)=2*subst(poltchebi(abs(n)),x,3)
    
  • PARI
    a(n)=if(n<0,a(-n),polsym(1-6*x+x^2,n)[n+1])
    
  • Sage
    [lucas_number2(n,6,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Views

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A003501 a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.

Original entry on oeis.org

2, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445, 146361602, 701260565, 3359941223, 16098445550, 77132286527, 369562987085, 1770682648898, 8483850257405, 40648568638127, 194758992933230, 933146396028023, 4470972987206885
Offset: 0

Views

Author

Keywords

Comments

Positive values of x satisfying x^2 - 21*y^2 = 4; values of y are in A004254. - Wolfdieter Lang, Nov 29 2002
Except for the first term, positive values of x (or y) satisfying x^2 - 5xy + y^2 + 21 = 0. - Colin Barker, Feb 08 2014

Examples

			G.f. = 2 + 5*x + 23*x^2 + 110*x^3 + 527*x^4 + 2525*x^5 + ... - _Michael Somos_, Oct 25 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[2,5];; for n in [4..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,5]; [n le 2 select I[n] else 5*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((2-5*x)/(1-5*x+x^2))); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    seq( simplify(2*ChebyshevT(n, 5/2)), n=0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    a[0]=2; a[1]=5; a[n_]:= 5a[n-1] -a[n-2]; Table[a[n], {n,0,30}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{5,-1},{2,5},30] (* Harvey P. Dale, May 12 2019 *)
    2*ChebyshevT[Range[0, 30], 5/2] (* G. C. Greubel, Jan 16 2020 *)
    a[ n_] := LucasL[n, 5*I]/I^n; (* Michael Somos, Oct 25 2022 *)
  • PARI
    {a(n) = subst(poltchebi(n),x,5/2)*2};
    
  • PARI
    {a(n) = polchebyshev(n,1,5/2)*2 }; /* Michael Somos, Oct 25 2022 */
    
  • Sage
    [lucas_number2(n,5,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 5*S(n-1, 5) - 2*S(n-2, 5) = S(n, 5) - S(n-2, 5) = 2*T(n, 5/2), with S(n, x)=U(n, x/2), S(-1, x)=0, S(-2, x)=-1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 5) = A004254(n), n>=0.
G.f.: (2-5*x)/(1-5*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) ~ (1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
a(n) = ap^n + am^n, with ap=(5+sqrt(21))/2 and am=(5-sqrt(21))/2.
a(n) = sqrt(4 + 21*A004254(n)^2).
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(5 - sqrt(21)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.19827 65373 95327 17782 ... = 2 + 1/(5 + 1/(23 + 1/(110 + ...))).
Also F(-alpha) = 0.79824 49142 28050 93561 ... has the continued fraction representation 1 - 1/(5 - 1/(23 - 1/(110 - ...))) and the simple continued fraction expansion 1/(1 + 1/((5-2) + 1/(1 + 1/((23-2) + 1/(1 + 1/((110-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((5^2-4) + 1/(1 + 1/((23^2-4) + 1/(1 + 1/((110^2-4) + 1/(1 + ...))))))).
(End)
a(n) = (A217787(k+3n) + A217787(k-3n))/A217787(k) for k>=3n. - Bruno Berselli, Mar 25 2013

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A056918 a(n) = 9*a(n-1)-a(n-2); a(0)=2, a(1)=9.

Original entry on oeis.org

2, 9, 79, 702, 6239, 55449, 492802, 4379769, 38925119, 345946302, 3074591599, 27325378089, 242853811202, 2158358922729, 19182376493359, 170483029517502, 1515164889164159, 13466000972959929, 119678843867475202
Offset: 0

Views

Author

Barry E. Williams, Aug 21 2000

Keywords

Comments

All nonnegative integer solutions of Pell equation a(n)^2 - 77*b(n)^2 = +4 together with b(n)=A018913(n), n>=0. - Wolfdieter Lang, Aug 31 2004
Except for the first term, positive values of x (or y) satisfying x^2 - 9xy + y^2 + 77 = 0. - Colin Barker, Feb 13 2014

Crossrefs

Cf. A018913. a(n)=sqrt(77*A018913(n)^2 + 4). A005248.

Programs

  • Haskell
    a056918 n = a056918_list !! n
    a056918_list = 2 : 9 :
       zipWith (-) (map (* 9) $ tail a056918_list) a056918_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Mathematica
    a[0] = 2; a[1] = 9; a[n_] := 9a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
  • Sage
    [lucas_number2(n,9,1) for n in range(23)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 9*S(n-1, 9) - 2*S(n-2, 9) = S(n, 9) - S(n-2, 9) = 2*T(n, 9/2), with S(n, x) := U(n, x/2) (see A049310), S(-1, x) := 0, S(-2, x) := -1. S(n-1, 9)=A018913(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind.
a(n) = {9*[((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n] - 2*[((9+sqrt(77))/2)^(n-1) - ((9-sqrt(77))/2)^(n-1)]}/sqrt(77).
G.f.: (2-9*x)/(1-9*x+x^2).
a(n) = ap^n + am^n, with ap := (9+sqrt(77))/2 and am := (9-sqrt(77))/2.
G.f.: (2-9*x)/(1-9*x+x^2). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(9 - sqrt(77)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.11095 50589 89701 91909 ... = 2 + 1/(9 + 1/(79 + 1/(702 + ...))).
Also F(-alpha) = 0.88873 23915 40314 47623 ... has the continued fraction representation 1 - 1/(9 - 1/(79 - 1/(702 - ...))) and the simple continued fraction expansion 1/(1 + 1/((9-2) + 1/(1 + 1/((79-2) + 1/(1 + 1/((702-2) + 1/(1 + ...))))))). F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((9^2-4) + 1/(1 + 1/((79^2-4) + 1/(1 + 1/((702^2-4) + 1/(1 + ...))))))). Cf. A005248.
(End)

Extensions

More terms from James Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A174504 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A002203(n)) ), where A002203(n) = (1+sqrt(2))^n + (1-sqrt(2))^n.

Original entry on oeis.org

1, 1, 5, 1, 13, 33, 1, 81, 197, 1, 477, 1153, 1, 2785, 6725, 1, 16237, 39201, 1, 94641, 228485, 1, 551613, 1331713, 1, 3215041, 7761797, 1, 18738637, 45239073, 1, 109216785, 263672645, 1, 636562077, 1536796801, 1, 3710155681, 8957108165, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A002203(n)) or, more explicitly,
L = 1/2 + 1/(2*6) + 1/(3*14) + 1/(4*34) + 1/(5*82) + 1/(6*198) +...
so that L = 0.6182475539420223547415636201969551910173293917288...
then exp(L) = 1.8556732235071087707741415885016794127474675663938...
equals the continued fraction given by this sequence:
exp(L) = [1;1,5,1,13,33,1,81,197,1,477,1153,1,2785,6725,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(5 + 1/(1 + 1/(13 + 1/(33 + 1/(1 +...)))))).
Compare these partial quotients to A002203(n), n=1,2,3,...:
[2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,228486,...].
		

Crossrefs

Cf. A002203 (companion Pell numbers), A174500, A174503, A174505.

Programs

  • Mathematica
    LinearRecurrence[{0,0,7,0,0,-7,0,0,1},{1,1,5,1,13,33,1,81,197},40] (* Harvey P. Dale, Sep 15 2016 *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((1+sqrt(2))^m+(1-sqrt(2))^m))));contfrac(exp(L))[n]}

Formula

a(3n-3) = 1, a(3n-2) = A002203(2n-1) - 1, a(3n-1) = A002203(2n) - 1, for n>=1 [conjecture].
From Colin Barker, Jan 20 2013: (Start)
a(n) = 7*a(n-3) - 7*a(n-6) + a(n-9).
G.f.: -(x^2-x+1)*(x^6-2*x^5-2*x^4-2*x^3+6*x^2+2*x+1) / ((x-1)*(x^2+x+1)*(x^6-6*x^3+1)). (End)
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A002203(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(2) - 1. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 2. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(2) - 1}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(2) - 1}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)

A087799 a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.

Original entry on oeis.org

2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003

Keywords

Comments

a(n+1)/a(n) converges to (5+sqrt(24)) = 9.8989794... a(0)/a(1)=2/10; a(1)/a(2)=10/98; a(2)/a(3)=98/970; a(3)/a(4)=970/9602; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.10102051... = 1/(5+sqrt(24)) = (5-sqrt(24)).
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 96 = 0. - Colin Barker, Feb 25 2014
A triangle whose sides are a(n) - 1, a(n) and a(n) + 1 is nearly Fleenor-Heronian since its area is the product of an integer and the square root of 2. See A003500. - Charlie Marion, Dec 18 2020

Examples

			a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
		

Crossrefs

Programs

  • Magma
    I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
    
  • PARI
    {a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
    
  • Sage
    [lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.
G.f.: (2-10*x)/(1-10*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 5 - sqrt(24). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.09989 80642 72052 68138 ... = 2 + 1/(10 + 1/(98 + 1/(970 + ...))).
Also F(-alpha) = 0.89989 78538 78393 34715 ... has the continued fraction representation 1 - 1/(10 - 1/(98 - 1/(970 - ...))) and the simple continued fraction expansion 1/(1 + 1/((10-2) + 1/(1 + 1/((98-2) + 1/(1 + 1/((970-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((10^2-4) + 1/(1 + 1/((98^2-4) + 1/(1 + 1/((970^2-4) + 1/(1 + ...))))))). Cf. A174503 and A005248. (End)
a(-n) = a(n). - Michael Somos, Feb 25 2014
From Peter Bala, Oct 16 2019: (Start)
8*Sum_{n >= 1} 1/(a(n) - 12/a(n)) = 1.
12*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 8/a(n)) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/8 - 12*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 12)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/12 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 8)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(5-sqrt(24)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(sqrt(24)-5))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499. (End)
E.g.f.: 2*exp(5*x)*cosh(2*sqrt(6)*x). - Stefano Spezia, Oct 18 2019
From Peter Bala, Mar 29 2022: (Start)
a(n) = 2*T(n,5), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(2^n) = A135927(n+1) and a(3^n) = A006242(n+1), both for n >= 0. (End)

Extensions

More terms from Colin Barker, Feb 25 2014

A221075 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 4. For other cases see A221073 (m = 2), A221074 (m = 3) and A221076 (m = 5).
If we denote the present sequence by [2; 12, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-2*{(2-sqrt(3))^(2*k+1)}^(4*n+3)]/[1 - 2*{(2-sqrt(3))^(2*k+1)}^(4*n+1)]. An example is given below

Examples

			Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
		

Crossrefs

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (2 + sqrt(3))^(2*n) + (2 - sqrt(3))^(2*n) - 2;
a(4*n - 1) = 1/2*{(2 + sqrt(3) )^(2*n + 1) + (2 - sqrt(3))^(2*n + 1)} - 2.
a(4*n - 3) = 12*A098301(n) = 12*A001353(n)^2 = 4*A007654(n);
a(4*n - 1) = 24*A076139(n) = 12*A217855 = 8*A076140(n) = 6*A123480(n) = 3*A045899(n).
O.g.f.: 2 + x^2/(1 - x^2) + 12*x*(1 + x^2)^2/(1 - 15*x^4 + 15*x^8 - x^12) = 2 + 12*x + x^2 + 24*x^3 + x^4 + 192*x^5 + ....
O.g.f.: (x^10-2*x^8-14*x^6+28*x^4-12*x^3+x^2-12*x-2) / ((x-1)*(x+1)*(x^4-4*x^2+1)*(x^4+4*x^2+1)). - Colin Barker, Jan 10 2014

A174501 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003499(n)) ), where A003499(n) = (3+sqrt(8))^n + (3-sqrt(8))^n.

Original entry on oeis.org

1, 4, 1, 32, 1, 196, 1, 1152, 1, 6724, 1, 39200, 1, 228484, 1, 1331712, 1, 7761796, 1, 45239072, 1, 263672644, 1, 1536796800, 1, 8957108164, 1, 52205852192, 1, 304278004996, 1, 1773462177792, 1, 10336495061764, 1, 60245508192800, 1, 351136554095044, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 20 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A003499(n)) or, more explicitly,
L = 1/6 + 1/(2*34) + 1/(3*198) + 1/(4*1154) + 1/(5*6726) +...
so that L = 0.1833074113563494600094468694966574405706183998044...
then exp(L) = 1.2011836088120841844713993433258934531421726294252...
equals the continued fraction given by this sequence:
exp(L) = [1;4,1,32,1,196,1,1152,1,6724,1,39200,1,...]; i.e.,
exp(L) = 1 + 1/(4 + 1/(1 + 1/(32 + 1/(1 + 1/(196 + 1/(1 +...)))))).
Compare these partial quotients to A003499(n), n=1,2,3,...:
[6,34,198,1154,6726,39202,228486,1331714,7761798,45239074,...].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,7,0,-7,0,1},{1,4,1,32,1,196},50] (* Harvey P. Dale, Jul 14 2021 *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((3+sqrt(8))^m+(3-sqrt(8))^m))));contfrac(exp(L))[n]}
    
  • PARI
    Vec(-x*(x^4+4*x^3-6*x^2+4*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 11 2016

Formula

a(2n-1) = 1, a(2n) = A003499(n) - 2, for n>=1 [conjecture].
The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013
a(n) = 7*a(n-2)-7*a(n-4)+a(n-6). G.f.: -x*(x^4+4*x^3-6*x^2+4*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)). - Colin Barker, Jan 20 2013
a(n) = (((-1-sqrt(2))^n+(1-sqrt(2))^n+(sqrt(2)-1)^n+(1+sqrt(2))^n-4))/2 for n even. - Colin Barker, May 11 2016
Showing 1-10 of 29 results. Next