A174503
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A087799(n)) ), where A087799(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.
Original entry on oeis.org
1, 8, 1, 96, 1, 968, 1, 9600, 1, 95048, 1, 940896, 1, 9313928, 1, 92198400, 1, 912670088, 1, 9034502496, 1, 89432354888, 1, 885289046400, 1, 8763458109128, 1, 86749292044896, 1, 858729462339848, 1, 8500545331353600, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A087799(n)) or, more explicitly,
L = 1/10 + 1/(2*98) + 1/(3*970) + 1/(4*9602) + 1/(5*95050) +...
so that L = 0.1054740177896236251618898675297390156061405857647...
then exp(L) = 1.1112372317482311056432125938345153306039099019639...
equals the continued fraction given by this sequence:
exp(L) = [1;8,1,96,1,968,1,9600,1,95048,1,940896,1,...]; i.e.,
exp(L) = 1 + 1/(8 + 1/(1 + 1/(96 + 1/(1 + 1/(968 + 1/(1 +...)))))).
Compare these partial quotients to A087799(n), n=1,2,3,...:
[10,98,970,9602,95050,940898,9313930,92198402,912670090,9034502498,...].
A174508
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086594(n)) ), where A086594(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.
Original entry on oeis.org
1, 7, 65, 1, 535, 4353, 1, 35367, 287297, 1, 2333751, 18957313, 1, 153992263, 1250895425, 1, 10161155671, 82540140801, 1, 670482282087, 5446398397505, 1, 44241669462135, 359379754094593, 1, 2919279702218887, 23713617371845697, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A086594(n)) or, more explicitly,
L = 1/8 + 1/(2*66) + 1/(3*536) + 1/(4*4354) + 1/(5*35368) +...
so that L = 0.1332613701545977545822925541573311424901819508933...
then exp(L) = 1.1425485874089841897117810754210805471767735522069...
equals the continued fraction given by this sequence:
exp(L) = [1;7,65,1,535,4353,1,35367,287297,1,2333751,...]; i.e.,
exp(L) = 1 + 1/(7 + 1/(65 + 1/(1 + 1/(535 + 1/(4353 + 1/(1 +...)))))).
Compare these partial quotients to A086594(n), n=1,2,3,...:
[8,66,536,4354,35368,287298,2333752,18957314,153992264,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,67,0,0,-67,0,0,1).
A174509
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086927(n)) ), where A086927(n) = (5+sqrt(26))^n + (5-sqrt(26))^n.
Original entry on oeis.org
1, 9, 101, 1, 1029, 10401, 1, 105049, 1060901, 1, 10714069, 108201601, 1, 1092730089, 11035502501, 1, 111447755109, 1125513053601, 1, 11366578291129, 114791295964901, 1, 1159279537940149, 11707586675366401, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A086927(n)) or, more explicitly,
L = 1/10 + 1/(2*102) + 1/(3*1030) + 1/(4*10402) + 1/(5*105050) +...
so that L = 0.1052516947742519131304505213983109248819463097531...
then exp(L) = 1.1109902055968924364755807035083159869000358017128...
equals the continued fraction given by this sequence:
exp(L) = [1;9,101,1,1029,10401,1,105049,1060901,1,...]; i.e.,
exp(L) = 1 + 1/(9 + 1/(101 + 1/(1 + 1/(1029 + 1/(10401 +1/(1+...)))))).
Compare these partial quotients to A086927(n), n=1,2,3,...:
[10,102,1030,10402,105050,1060902,10714070,108201602,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,103,0,0,-103,0,0,1).
-
LinearRecurrence[{0,0,103,0,0,-103,0,0,1},{1,9,101,1,1029,10401,1,105049,1060901},30] (* Harvey P. Dale, Dec 24 2014 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((5+sqrt(26))^m+(5-sqrt(26))^m))));contfrac(exp(L))[n]}
A174505
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*Lucas(n)) ), where Lucas(n) = A000032(n) = ((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n.
Original entry on oeis.org
3, 1, 3, 6, 1, 10, 17, 1, 28, 46, 1, 75, 122, 1, 198, 321, 1, 520, 842, 1, 1363, 2206, 1, 3570, 5777, 1, 9348, 15126, 1, 24475, 39602, 1, 64078, 103681, 1, 167760, 271442, 1, 439203, 710646, 1, 1149850, 1860497, 1, 3010348, 4870846, 1, 7881195, 12752042, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A000032(n)) or, more explicitly,
L = 1 + 1/(2*3) + 1/(3*4) + 1/(4*7) + 1/(5*11) + 1/(6*18) +...
so that L = 1.3240810281350207977825663314844927483236088628781...
then exp(L) = 3.7587296006215531704236522952745520722012715044952...
equals the continued fraction given by this sequence:
exp(L) = [3;1,3,6,1,10,17,1,28,46,1,75,122,1,198,321,1,...]; i.e.,
exp(L) = 3 + 1/(1 + 1/(3 + 1/(6 + 1/(1 + 1/(10 + 1/(17 +...)))))).
Compare these partial quotients to A000032(n), n=1,2,3,...:
[1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-4,0,0,1).
-
LinearRecurrence[{0,0,4,0,0,-4,0,0,1},{3,1,3,6,1,10,17,1,28,46},50] (* Harvey P. Dale, Feb 02 2025 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round(((1+sqrt(5))/2)^m+((1-sqrt(5))/2)^m))));contfrac(exp(L))[n]}
A174506
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A014448(n)) ), where A014448(n) = (2+sqrt(5))^n + (2-sqrt(5))^n.
Original entry on oeis.org
1, 3, 17, 1, 75, 321, 1, 1363, 5777, 1, 24475, 103681, 1, 439203, 1860497, 1, 7881195, 33385281, 1, 141422323, 599074577, 1, 2537720635, 10749957121, 1, 45537549123, 192900153617, 1, 817138163595, 3461452808001, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A014448(n)) or, more explicitly,
L = 1/4 + 1/(2*18) + 1/(3*76) + 1/(4*322) + 1/(5*1364) +...
so that L = 0.2831229765066671850017990708479258794794782639219...
then exp(L) = 1.3272683746094012523448609429829013914921330866098...
equals the continued fraction given by this sequence:
exp(L) = [1;3,17,1,75,321,1,1363,5777,1,24475,103681,1,...]; i.e.,
exp(L) = 1 + 1/(3 + 1/(17 + 1/(1 + 1/(75 + 1/(321 + 1/(1 +...)))))).
Compare these partial quotients to A014448(n), n=1,2,3,...:
[4,18,76,322,1364,5778,24476,103682,439204,1860498,7881196,33385282,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,19,0,0,-19,0,0,1).
A174507
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A085447(n)) ), where A085447(n) = (3+sqrt(10))^n + (3-sqrt(10))^n.
Original entry on oeis.org
1, 5, 37, 1, 233, 1441, 1, 8885, 54757, 1, 337433, 2079361, 1, 12813605, 78960997, 1, 486579593, 2998438561, 1, 18477210965, 113861704357, 1, 701647437113, 4323746327041, 1, 26644125399365, 164188498723237, 1, 1011775117738793
Offset: 0
Let L = Sum_{n>=1} 1/(n*A085447(n)) or, more explicitly,
L = 1/6 + 1/(2*38) + 1/(3*234) + 1/(4*1442) + 1/(5*8886) +...
so that L = 0.1814484777922995750614847484088330644558009487798...
then exp(L) = 1.1989527624251050123398509513177598419795554140316...
equals the continued fraction given by this sequence:
exp(L) = [1;5,37,1,233,1441,1,8885,54757,1,337433,...]; i.e.,
exp(L) = 1 + 1/(5 + 1/(37 + 1/(1 + 1/(233 + 1/(1441 + 1/(1 +...)))))).
Compare these partial quotients to A085447(n), n=1,2,3,...:
[6,38,234,1442,8886,54758,337434,2079362,12813606,78960998,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,39,0,0,-39,0,0,1).
-
LinearRecurrence[{0,0,39,0,0,-39,0,0,1},{1,5,37,1,233,1441,1,8885,54757},30] (* Harvey P. Dale, Aug 07 2016 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((3+sqrt(10))^m+(3-sqrt(10))^m))));contfrac(exp(L))[n]}
A174510
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A080040(n)) ), where A080040(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
Original entry on oeis.org
1, 1, 3, 1, 9, 13, 1, 37, 51, 1, 141, 193, 1, 529, 723, 1, 1977, 2701, 1, 7381, 10083, 1, 27549, 37633, 1, 102817, 140451, 1, 383721, 524173, 1, 1432069, 1956243, 1, 5344557, 7300801, 1, 19946161, 27246963, 1, 74440089, 101687053, 1, 277814197
Offset: 0
Let L = Sum_{n>=1} 1/(n*A080040(n)) or, more explicitly,
L = 1/2 + 1/(2*8) + 1/(3*20) + 1/(4*56) + 1/(5*152) + 1/(6*416) +...
so that L = 0.5855329921665857283309456463364081071245363598803...
then exp(L) = 1.7959479567807442397990076546690432122217738278933...
equals the continued fraction given by this sequence:
exp(L) = [1;1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(9 + 1/(13 + 1/(1 +...)))))).
Compare these partial quotients to A080040(n)/2^[n/2], n=1,2,3,...:
[2,4,10,14,38,52,142,194,530,724,1978,2702,7382,10084,27550,...],
where A080040 begins:
[2,8,20,56,152,416,1136,3104,8480,23168,63296,172928,472448,...].
Showing 1-7 of 7 results.