A174504
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A002203(n)) ), where A002203(n) = (1+sqrt(2))^n + (1-sqrt(2))^n.
Original entry on oeis.org
1, 1, 5, 1, 13, 33, 1, 81, 197, 1, 477, 1153, 1, 2785, 6725, 1, 16237, 39201, 1, 94641, 228485, 1, 551613, 1331713, 1, 3215041, 7761797, 1, 18738637, 45239073, 1, 109216785, 263672645, 1, 636562077, 1536796801, 1, 3710155681, 8957108165, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A002203(n)) or, more explicitly,
L = 1/2 + 1/(2*6) + 1/(3*14) + 1/(4*34) + 1/(5*82) + 1/(6*198) +...
so that L = 0.6182475539420223547415636201969551910173293917288...
then exp(L) = 1.8556732235071087707741415885016794127474675663938...
equals the continued fraction given by this sequence:
exp(L) = [1;1,5,1,13,33,1,81,197,1,477,1153,1,2785,6725,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(5 + 1/(1 + 1/(13 + 1/(33 + 1/(1 +...)))))).
Compare these partial quotients to A002203(n), n=1,2,3,...:
[2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,228486,...].
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 2
- Index entries for linear recurrences with constant coefficients, signature (0,0,7,0,0,-7,0,0,1).
-
LinearRecurrence[{0,0,7,0,0,-7,0,0,1},{1,1,5,1,13,33,1,81,197},40] (* Harvey P. Dale, Sep 15 2016 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((1+sqrt(2))^m+(1-sqrt(2))^m))));contfrac(exp(L))[n]}
A087799
a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.
Original entry on oeis.org
2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003
a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
-
a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
-
polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
-
{a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
-
[lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
A174502
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086903(n)) ), where A086903(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.
Original entry on oeis.org
1, 6, 1, 60, 1, 486, 1, 3840, 1, 30246, 1, 238140, 1, 1874886, 1, 14760960, 1, 116212806, 1, 914941500, 1, 7203319206, 1, 56711612160, 1, 446489578086, 1, 3515205012540, 1, 27675150522246, 1, 217885999165440, 1, 1715412842801286, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A086903(n)) or, more explicitly,
L = 1/8 + 1/(2*62) + 1/(3*488) + 1/(4*3842) + 1/(5*30248) +...
so that L = 0.1338200441271648228100625767561479963630539052200...
then exp(L) = 1.1431870779045667085973926071888878662387686835715...
equals the continued fraction given by this sequence:
exp(L) = [1;6,1,60,1,486,1,3840,1,30246,1,238140,1,...]; i.e.,
exp(L) = 1 + 1/(6 + 1/(1 + 1/(60 + 1/(1 + 1/(486 + 1/(1 +...)))))).
Compare these partial quotients to A086903(n), n=1,2,3,...:
[8,62,488,3842,30248,238142,1874888,14760962,116212808,914941502,...].
-
LinearRecurrence[{0,9,0,-9,0,1},{1,6,1,60,1,486},50] (* Harvey P. Dale, Jun 09 2013 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((4+sqrt(15))^m+(4-sqrt(15))^m))));contfrac(exp(L))[n]}
A174509
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086927(n)) ), where A086927(n) = (5+sqrt(26))^n + (5-sqrt(26))^n.
Original entry on oeis.org
1, 9, 101, 1, 1029, 10401, 1, 105049, 1060901, 1, 10714069, 108201601, 1, 1092730089, 11035502501, 1, 111447755109, 1125513053601, 1, 11366578291129, 114791295964901, 1, 1159279537940149, 11707586675366401, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A086927(n)) or, more explicitly,
L = 1/10 + 1/(2*102) + 1/(3*1030) + 1/(4*10402) + 1/(5*105050) +...
so that L = 0.1052516947742519131304505213983109248819463097531...
then exp(L) = 1.1109902055968924364755807035083159869000358017128...
equals the continued fraction given by this sequence:
exp(L) = [1;9,101,1,1029,10401,1,105049,1060901,1,...]; i.e.,
exp(L) = 1 + 1/(9 + 1/(101 + 1/(1 + 1/(1029 + 1/(10401 +1/(1+...)))))).
Compare these partial quotients to A086927(n), n=1,2,3,...:
[10,102,1030,10402,105050,1060902,10714070,108201602,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,103,0,0,-103,0,0,1).
-
LinearRecurrence[{0,0,103,0,0,-103,0,0,1},{1,9,101,1,1029,10401,1,105049,1060901},30] (* Harvey P. Dale, Dec 24 2014 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((5+sqrt(26))^m+(5-sqrt(26))^m))));contfrac(exp(L))[n]}
Showing 1-4 of 4 results.
Comments