cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A174503 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A087799(n)) ), where A087799(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.

Original entry on oeis.org

1, 8, 1, 96, 1, 968, 1, 9600, 1, 95048, 1, 940896, 1, 9313928, 1, 92198400, 1, 912670088, 1, 9034502496, 1, 89432354888, 1, 885289046400, 1, 8763458109128, 1, 86749292044896, 1, 858729462339848, 1, 8500545331353600, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A087799(n)) or, more explicitly,
L = 1/10 + 1/(2*98) + 1/(3*970) + 1/(4*9602) + 1/(5*95050) +...
so that L = 0.1054740177896236251618898675297390156061405857647...
then exp(L) = 1.1112372317482311056432125938345153306039099019639...
equals the continued fraction given by this sequence:
exp(L) = [1;8,1,96,1,968,1,9600,1,95048,1,940896,1,...]; i.e.,
exp(L) = 1 + 1/(8 + 1/(1 + 1/(96 + 1/(1 + 1/(968 + 1/(1 +...)))))).
Compare these partial quotients to A087799(n), n=1,2,3,...:
[10,98,970,9602,95050,940898,9313930,92198402,912670090,9034502498,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((5+sqrt(24))^m+(5-sqrt(24))^m))));contfrac(exp(L))[n]}

Formula

a(2n-2) = 1, a(2n-1) = A087799(n) - 2, for n>=1 [conjecture].
The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013
a(n) = 11*a(n-2)-11*a(n-4)+a(n-6). G.f.: -(x^4+8*x^3-10*x^2+8*x+1) / ((x-1)*(x+1)*(x^4-10*x^2+1)). [Colin Barker, Jan 20 2013]

A204518 Numbers such that floor(a(n)^2 / 6) is a square.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 27, 49, 98, 267, 485, 970, 2643, 4801, 9602, 26163, 47525, 95050, 258987, 470449, 940898, 2563707, 4656965, 9313930, 25378083, 46099201, 92198402, 251217123, 456335045, 912670090, 2486793147, 4517251249, 9034502498, 24616714347
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square, with its last base-6 digit dropped, is again a square. (For the three initial terms whose square has only one digit in base 6, this is then meant to yield zero.)

Crossrefs

Cf. A023110 (base 10), A204502 (base 9), A204514 (base 8), A204516 (base 7), A204520 (base 5), A004275 (base 4), A055793 (base 3), A055792 (base 2).

Programs

  • PARI
    b=6;for(n=0,2e9,issquare(n^2\b) & print1(n","))
    
  • PARI
    concat(0, Vec(-x^2*(x+1)*(3*x^4+7*x^3-2*x^2-x-1)/(x^6-10*x^3+1) + O(x^100))) \\ Colin Barker, Sep 18 2014

Formula

a(n) = sqrt(A055851(n)).
From Colin Barker, Sep 18 2014: (Start)
a(n) = 10*a(n-3) - a(n-6) for n > 7.
G.f.: -x^2*(x+1)*(3*x^4 + 7*x^3 - 2*x^2 - x - 1) / (x^6-10*x^3+1). (End)
a(3n+2) = A001079(n). a(3n) = A087799(n-1). - R. J. Mathar, Feb 05 2020

Extensions

More terms from Colin Barker, Sep 18 2014

A299741 Array read by antidiagonals upwards: a(i,0) = 2, i >= 0; a(i,1) = i+2, i >= 0; a(i,j) = (i+2) * a(i,j-1) - a(i,j-2), for i >= 0, j > 1.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 4, 7, 2, 2, 5, 14, 18, 2, 2, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 2, 8, 47, 198, 527, 724, 322, 2, 2, 9, 62, 322, 1154, 2525, 2702, 843, 2, 2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, 2, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2
Offset: 0

Views

Author

William W. Collier, Feb 18 2018

Keywords

Comments

Note the similarity in form of the recursive steps in the array definition above and the polynomial definition under FORMULA.

Examples

			i\j |0  1   2    3      4       5        6          7           8            9
----+-------------------------------------------------------------------------
   0|2  2   2    2      2       2        2          2           2            2
   1|2  3   7   18     47     123      322        843        2207         5778
   2|2  4  14   52    194     724     2702      10084       37634       140452
   3|2  5  23  110    527    2525    12098      57965      277727      1330670
   4|2  6  34  198   1154    6726    39202     228486     1331714      7761798
   5|2  7  47  322   2207   15127   103682     710647     4870847     33385282
   6|2  8  62  488   3842   30248   238142    1874888    14760962    116212808
   7|2  9  79  702   6239   55449   492802    4379769    38925119    345946302
   8|2 10  98  970   9602   95050   940898    9313930    92198402    912670090
   9|2 11 119 1298  14159  154451  1684802   18378371   200477279   2186871698
  10|2 12 142 1692  20162  240252  2862862   34114092   406506242   4843960812
  11|2 13 167 2158  27887  360373  4656962   60180133   777684767  10049721838
  12|2 14 194 2702  37634  524174  7300802  101687054  1416317954  19726764302
  13|2 15 223 3330  49727  742575 11088898  165590895  2472774527  36926027010
  14|2 16 254 4048  64514 1028176 16386302  261152656  4162056194  66331746448
  15|2 17 287 4862  82367 1395377 23639042  400468337  6784322687 114933017342
  16|2 18 322 5778 103682 1860498 33385282  599074578 10749957122 192900153618
  17|2 19 359 6802 128879 2441899 46267202  876634939 16609796639 314709501202
  18|2 20 398 7940 158402 3160100 63043598 1257711860 25091193602 500566160180
  19|2 21 439 9198 192719 4037901 84603202 1772629341 37140612959 778180242798
		

Crossrefs

The array first appeared in A298675.
Rows 1 through 29 of the array appear in these OEIS entries: A005248, A003500, A003501, A003499, A056854, A086903, A056918, A087799, A057076, A087800, A078363, A067902, A078365, A090727, A078367, A087215, A078369, A090728, A090729, A090730, A090731, A090732, A090733, A090247, A090248, A090249, A090251. Also entries occur for rows 45, 121, and 320: A087265, A065705, A089775. Each of these entries asserts that a(i,j)=f(i+2,j) is true for that row.
A few of the columns appear in the OEIS: A008865 (for column 2), A058794 and A007754 (for column 3), and A230586 (for column 5).
Main diagonal gives A343261.

Programs

  • Maple
    A:= proc(i, j) option remember; `if`(min(i, j)=0, 2,
          `if`(j=1, i+2, (i+2)*A(i, j-1)-A(i, j-2)))
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Mar 05 2019
  • Mathematica
    a[, 0] = a[0, ] = 2; a[i_, 1] := i + 2;
    a[i_, j_] := a[i, j] =(i + 2) a[i, j - 1] - a[i, j - 2];
    Table[a[i - j, j], {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

Let k be an integer, and let r1 and r2 be the roots of x + 1/x = k. Then f(k,n) = r1^n + r2^n is an integer, for integer n >= 0. Theorem: a(i,j) = f(i+2,j), for i,j >= 0. Proof: See the Collier link.
Define polynomials recursively by:
p[0](n) = 2, for n >= 0 ( [ and ] demark subscripts).
p[1](n) = n + 2, for n >= 0.
p[j](n) = p[j-1](n) * p[1](n) - p[j-2](n), for j > 1, n >= 0. The coefficients of these polynomials occur as the even numbered, upward diagonals in the OEIS Wiki link. Conjecture: a(i,j) = p[j](i), i,j >= 0.

Extensions

Edited by N. J. A. Sloane, Apr 04 2018

A171640 a(n) = 10*a(n-1)-a(n-2)-4 with a(1)=1 and a(2)=3.

Original entry on oeis.org

1, 3, 25, 243, 2401, 23763, 235225, 2328483, 23049601, 228167523, 2258625625, 22358088723, 221322261601, 2190864527283, 21687323011225, 214682365584963, 2125136332838401, 21036680962799043, 208241673295152025, 2061380051988721203, 20405558846592060001
Offset: 1

Views

Author

Mark Dols, Dec 13 2009

Keywords

Examples

			a(2+1) = [5-sqrt(24)+5+sqrt(24)]^2/4 = 100/4 = 25.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 10 a[n - 1] - a[n - 2] - 4, a[1] == 1, a[2] == 3}, a, {n, 1, 21}] (* Michael De Vlieger, Oct 02 2015 *)
    LinearRecurrence[{11,-11,1},{1,3,25},30] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    Vec(-x*(3*x^2-8*x+1)/((x-1)*(x^2-10*x+1)) + O(x^30)) \\ Colin Barker, Oct 02 2015

Formula

a(n) = A132596(n-1)+1.
2*a(n) + 2*A132596(n-1) = A087799(n-1).
a(n+1) = [(sqrt(3)-sqrt(2))^n +(sqrt(3)+ sqrt(2))^n]^2 / 4.
From Colin Barker, Oct 02 2015: (Start)
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) for n>3.
G.f.: -x*(3*x^2-8*x+1) / ((x-1)*(x^2-10*x+1)).
(End)
6*a(n)*(a(n)-1) = [A122653(n-1)]^2. - Jean-Luc Manguin, Jun 02 2020

A171659 Lucas-version of A165293.

Original entry on oeis.org

2, 10, -2, 100, -30, 2, 1000, -400, 50, -2, 10000, -5000, 900, -70, 2, 100000, -60000, 14000, -1600, 90, -2
Offset: 1

Views

Author

Mark Dols, Dec 14 2009

Keywords

Examples

			Triangle begins:
2
10,-2
100,-30,2
1000,-400,50,-2
		

Crossrefs

Cf. A165293, A087799 (antidiagonal sums), A004189.
Showing 1-5 of 5 results.