A174501
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003499(n)) ), where A003499(n) = (3+sqrt(8))^n + (3-sqrt(8))^n.
Original entry on oeis.org
1, 4, 1, 32, 1, 196, 1, 1152, 1, 6724, 1, 39200, 1, 228484, 1, 1331712, 1, 7761796, 1, 45239072, 1, 263672644, 1, 1536796800, 1, 8957108164, 1, 52205852192, 1, 304278004996, 1, 1773462177792, 1, 10336495061764, 1, 60245508192800, 1, 351136554095044, 1
Offset: 1
Let L = Sum_{n>=1} 1/(n*A003499(n)) or, more explicitly,
L = 1/6 + 1/(2*34) + 1/(3*198) + 1/(4*1154) + 1/(5*6726) +...
so that L = 0.1833074113563494600094468694966574405706183998044...
then exp(L) = 1.2011836088120841844713993433258934531421726294252...
equals the continued fraction given by this sequence:
exp(L) = [1;4,1,32,1,196,1,1152,1,6724,1,39200,1,...]; i.e.,
exp(L) = 1 + 1/(4 + 1/(1 + 1/(32 + 1/(1 + 1/(196 + 1/(1 +...)))))).
Compare these partial quotients to A003499(n), n=1,2,3,...:
[6,34,198,1154,6726,39202,228486,1331714,7761798,45239074,...].
- Colin Barker, Table of n, a(n) for n = 1..1000
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,7,0,-7,0,1).
-
LinearRecurrence[{0,7,0,-7,0,1},{1,4,1,32,1,196},50] (* Harvey P. Dale, Jul 14 2021 *)
-
{a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((3+sqrt(8))^m+(3-sqrt(8))^m))));contfrac(exp(L))[n]}
-
Vec(-x*(x^4+4*x^3-6*x^2+4*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 11 2016
A086903
a(n) = 8*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 8.
Original entry on oeis.org
2, 8, 62, 488, 3842, 30248, 238142, 1874888, 14760962, 116212808, 914941502, 7203319208, 56711612162, 446489578088, 3515205012542, 27675150522248, 217885999165442, 1715412842801288, 13505416743244862, 106327921103157608
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
a(4) = 3842 = 8*a(3) - a(2) = 8*488 - 62 = (4+sqrt(15))^4 + (4-sqrt(15))^4 = 3841.9997397 + 0.0002603 = 3842.
-
I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 15 2014
-
a[0] = 2; a[1] = 8; a[n_] := 8a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
CoefficientList[Series[(2 - 8 x)/(1 - 8 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2014 *)
LinearRecurrence[{8,-1},{2,8},30] (* Harvey P. Dale, Jan 18 2015 *)
-
[lucas_number2(n,8,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
A174503
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A087799(n)) ), where A087799(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.
Original entry on oeis.org
1, 8, 1, 96, 1, 968, 1, 9600, 1, 95048, 1, 940896, 1, 9313928, 1, 92198400, 1, 912670088, 1, 9034502496, 1, 89432354888, 1, 885289046400, 1, 8763458109128, 1, 86749292044896, 1, 858729462339848, 1, 8500545331353600, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A087799(n)) or, more explicitly,
L = 1/10 + 1/(2*98) + 1/(3*970) + 1/(4*9602) + 1/(5*95050) +...
so that L = 0.1054740177896236251618898675297390156061405857647...
then exp(L) = 1.1112372317482311056432125938345153306039099019639...
equals the continued fraction given by this sequence:
exp(L) = [1;8,1,96,1,968,1,9600,1,95048,1,940896,1,...]; i.e.,
exp(L) = 1 + 1/(8 + 1/(1 + 1/(96 + 1/(1 + 1/(968 + 1/(1 +...)))))).
Compare these partial quotients to A087799(n), n=1,2,3,...:
[10,98,970,9602,95050,940898,9313930,92198402,912670090,9034502498,...].
A174508
Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086594(n)) ), where A086594(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.
Original entry on oeis.org
1, 7, 65, 1, 535, 4353, 1, 35367, 287297, 1, 2333751, 18957313, 1, 153992263, 1250895425, 1, 10161155671, 82540140801, 1, 670482282087, 5446398397505, 1, 44241669462135, 359379754094593, 1, 2919279702218887, 23713617371845697, 1
Offset: 0
Let L = Sum_{n>=1} 1/(n*A086594(n)) or, more explicitly,
L = 1/8 + 1/(2*66) + 1/(3*536) + 1/(4*4354) + 1/(5*35368) +...
so that L = 0.1332613701545977545822925541573311424901819508933...
then exp(L) = 1.1425485874089841897117810754210805471767735522069...
equals the continued fraction given by this sequence:
exp(L) = [1;7,65,1,535,4353,1,35367,287297,1,2333751,...]; i.e.,
exp(L) = 1 + 1/(7 + 1/(65 + 1/(1 + 1/(535 + 1/(4353 + 1/(1 +...)))))).
Compare these partial quotients to A086594(n), n=1,2,3,...:
[8,66,536,4354,35368,287298,2333752,18957314,153992264,...].
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 2.
- Index entries for linear recurrences with constant coefficients, signature (0,0,67,0,0,-67,0,0,1).
Showing 1-4 of 4 results.
Comments