cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A339130 Odd composite integers m such that A003501(m-J(m,21)) == 2 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

25, 121, 169, 275, 289, 361, 527, 529, 551, 575, 841, 961, 1369, 1681, 1807, 1849, 1919, 2209, 2783, 2809, 3025, 3481, 3721, 4033, 4489, 5041, 5329, 5777, 5983, 6049, 6241, 6479, 6575, 6889, 7267, 7645, 7921, 8959, 8993, 9361, 9409, 9775
Offset: 1

Views

Author

Ovidiu Bagdasar, Nov 24 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity
V(p-J(p,D)) == 2 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with V(m-J(m,D)) == 2 (mod m).
For a=5 and b=1, we have D=21 and V(m) recovers A003501(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)

Crossrefs

Cf. A003501.
Cf. A339125 (a=1, b=-1), A339126 (a=3, b=-1), A339127 (a=5, b=-1), A339128 (a=7, b=-1), A339129 (a=3, b=1), A339131 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[# - JacobiSymbol[#, 21], 5/2] - 2, #] &] (* Amiram Eldar, Nov 26 2020 *)

A335674 Odd composite integers m such that A003501(m) == 5 (mod m).

Original entry on oeis.org

15, 21, 35, 105, 161, 195, 255, 345, 385, 399, 465, 527, 551, 609, 741, 897, 1105, 1295, 1311, 1807, 1919, 2001, 2015, 2071, 2085, 2121, 2415, 2737, 2915, 3289, 3815, 4031, 4033, 4355, 4879, 4991, 5291, 5777, 5983, 6049, 6061, 6083, 6479, 6601, 6785, 7645, 7905, 8695, 8855, 8911, 9361, 9591, 9889
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A003501(p)==5 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=5, b=1, V(n) recovers A003501(n).

Examples

			15 is the first odd composite integer for which the relation A003501(15)=16098445550==5 (mod 15) holds.
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A005248, A335669 (a=3,b=-1), A335672 (a=3,b=1), A335673 (a=4,b=1).

Programs

  • Mathematica
    Select[Range[3, 5000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 5/2] - 5, #] &] (* Amiram Eldar, Jun 18 2020 *)

A339522 Odd composite integers m such that A003501(2*m-J(m,21)) == 5 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

95, 115, 145, 253, 391, 527, 551, 713, 715, 779, 935, 1045, 1615, 1705, 1805, 1807, 1919, 2185, 2627, 2755, 2893, 2929, 2945, 3281, 4033, 4141, 4205, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8441, 8555, 8695, 9361, 11663, 11815, 12121, 12209, 12265, 14491
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=5, D=21 and k=2, while V(m) recovers A003501(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A003501, A071904, A339130 (a=5, b=1, k=1).
Cf. A339521 (a=3, b=1), A339523 (a=7, b=1).

Programs

  • Maple
    filter:= proc(m)
    uses LinearAlgebra:-Modular;
    local p,M;
      if igcd(m,21) <> 1 then return false fi;
      if isprime(m) then return false fi;
      p:= 2*m - numtheory:-jacobi(m,21);
      M:= Mod(m,[[0,1],[-1,5]],integer[8]);
      (MatrixPower(m,M,p) . <2,5>)[1] - 5 mod m = 0
    end proc:
    select(filter, [seq(i,i=9..20000,2)]); # Robert Israel, Dec 15 2020
  • Mathematica
    Select[Range[3, 20000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[2*# - JacobiSymbol[#, 21], 5/2] - 5, #] &]

A337779 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 5 (mod m), where U(m)=A004254(m) and V(m)=A003501(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=5 and b=1, respectively.

Original entry on oeis.org

527, 551, 1105, 1807, 1919, 2015, 2071, 2915, 3289, 4031, 4033, 4355, 5291, 5777, 5983, 6049, 6061, 6479, 6785, 7645, 8695, 9361, 9889, 11285, 11663, 11951, 12209, 12265, 12545, 13079, 14491, 16211, 17119, 17249, 18299, 18407, 20087, 20099, 20845, 21505, 22499
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=5 and b=1.

Crossrefs

Cf. A337628 (a=5, b=-1), A337778 (a=4, b=1).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 5/2] - 5, #] && Divisible[ChebyshevU[#-1, 5/2]*ChebyshevU[#-1, 5/2] - 1, #] &]

Extensions

More terms from Amiram Eldar, Sep 21 2020

A339729 Odd composite integers m such that A003501(3*m-J(m,21)) == 23 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

25, 55, 85, 115, 155, 187, 253, 275, 341, 407, 527, 551, 559, 575, 851, 925, 1199, 1265, 1633, 1775, 1807, 1919, 1961, 2123, 2507, 2635, 2641, 2725, 3401, 3553, 3959, 4033, 4381, 4807, 5461, 5777, 5797, 5977, 5983, 6049, 6325, 6439, 6479, 6575, 7645, 7999, 8639
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 14 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=5, D=21 and k=3, while V(m) recovers A003501(m), with V(2)=23.

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A003501, A071904, A339130 (a=5, b=1, k=1), A339522 (a=5, b=1, k=2).
Cf. A339728 (a=3, b=1), A339730 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 9000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[3*# - JacobiSymbol[#, 21], 5/2] - 23, #] &]

A004254 a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, 1391275, 6665999, 31938720, 153027601, 733199285, 3512968824, 16831644835, 80645255351, 386394631920, 1851327904249, 8870244889325, 42499896542376, 203629237822555, 975646292570399, 4674602225029440, 22397364832576801
Offset: 0

Views

Author

Keywords

Comments

Nonnegative values of y satisfying x^2 - 21*y^2 = 4; values of x are in A003501. - Wolfdieter Lang, Nov 29 2002
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 5's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 26 2024: (Start)
For any three consecutive terms (x, y, z), y^2 - xz = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 4t(k-1) + 4t(k-2) - t(k-3) or t(k) = 5t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (4,4,-1) has the same three initial values as the current sequence, a(n) = t(n) applies.
a(n) = (t(k+1)*t(k+n) - t(k)*t(k+n+1))/(y^2 - xz) where (t) is any recurrence of the current family with signature (5,-1) and (x, y, z) are any three consecutive terms of (t), for integer k >= 0. (End)

Examples

			G.f. = x + 5*x^2 + 24*x^3 + 115*x^4 + 551*x^5 + 2640*x^6 + 12649*x^7 + ...
		

References

  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A004253.
Cf. A000027, A001906, A001353, A003501, A030221. a(n) = sqrt((A003501(n)^2 - 4)/21).
First differences of a(n) are in A004253, partial sums in A089817.
Cf. A004253.
INVERT transformation yields A001109. - R. J. Mathar, Sep 11 2008

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
  • Maple
    A004254:=1/(1-5*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,4}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    a[ n_] := ChebyshevU[2 n - 1, Sqrt[7]/2] / Sqrt[7]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = subst(4*poltchebi(n+1) - 10*poltchebi(n), x, 5/2) / 21}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = imag((5 + quadgen(84))^n) / 2^(n-1)}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = polchebyshev(n - 1, 2, 5/2)}; /* Michael Somos, Jan 22 2017 */
    
  • PARI
    {a(n) = simplify( polchebyshev( 2*n - 1, 2, quadgen(28)/2) / quadgen(28))}; /* Michael Somos, Jan 22 2017 */
    
  • Sage
    [lucas_number1(n,5,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-5*x+x^2).
a(n) = (((5+sqrt(21))/2)^n-((5-sqrt(21))/2)^n)/sqrt(21). - Barry E. Williams, Aug 29 2000
a(n) = S(2*n-1, sqrt(7))/sqrt(7) = S(n-1, 5); S(n, x)=U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
A003501(n) = sqrt(21*a(n)^2 + 4).
a(n) = Sum_{k=0..n-1} binomial(n+k, 2*k+1)*2^k. - Paul Barry, Nov 30 2004
[A004253(n), a(n)] = [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n+1) = Sum_{k=0..n} Gegenbauer_C(n-k,k+1,2). - Paul Barry, Apr 21 2009
a(n+1) = Sum_{k=0..n} A101950(n,k)*4^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(21)).
Product {n >= 2} (1 - 1/a(n)) = (1/10)*(3 + sqrt(21)). (End)
From Michael Somos, Jan 22 2017: (Start)
A054493(2*n - 1) = 7 * a(n)^2 for all n in Z.
a(n) = -a(-n) for all n in Z.
0 = -1 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. (End)
Limit_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 15 2023
From Klaus Purath, Jul 26 2024: (Start)
a(n) = 4(a(n-1) + a(n-2)) - a(n-3).
a(n) = 6(a(n-1) - a(n-2)) + a(n-3).
In general, for all sequences of the form U(n) = P*U(n-1) - U(n-2) the following applies:
U(n) = (P-1)*U(n-1) + (P-1)*U(n-2) - U(n-3).
U(n) = (P+1)*U(n-1) - (P+1)*U(n-2) + U(n-3). (End)
a(n) = (5*a(n-1)+sqrt(21*a(n-1)^2+4))/2 for n>0. - Alexandru Petrescu, Apr 15 2025
From Peter Bala, May 22 2025: (Start)
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 7/3.
Product_{n >= 1} ((a(2*n+1) + 1)/(a(2*n+1) - 1))^2 = 25/21.
The o.g.f. A(x) satisfies A(x) + A(-x) + 10*A(x)*A(-x) = 0. The o.g.f. for A097778 equals -1/x * A(sqrt(x))*A(-sqrt(x)). (End)
E.g.f.: 2*exp(5*x/2)*sinh(sqrt(21)*x/2)/sqrt(21). - Stefano Spezia, Jul 02 2025

A004253 a(n) = 5*a(n-1) - a(n-2), with a(1)=1, a(2)=4.

Original entry on oeis.org

1, 4, 19, 91, 436, 2089, 10009, 47956, 229771, 1100899, 5274724, 25272721, 121088881, 580171684, 2779769539, 13318676011, 63813610516, 305749376569, 1464933272329, 7018916985076, 33629651653051, 161129341280179, 772017054747844, 3698955932459041, 17722762607547361
Offset: 1

Views

Author

Keywords

Comments

Number of domino tilings in K_3 X P_2n (or in S_4 X P_2n).
Number of perfect matchings in graph C_{3} X P_{2n}.
Number of perfect matchings in S_4 X P_2n.
In general, Sum_{k=0..n} binomial(2*n-k, k)*j^(n-k) = (-1)^n * U(2*n, i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,5), where L is defined as in A108299; see also A030221 for L(n,-5). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4} which do not end in 0 (e.g., at n=2, we have 02, 03, 04, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44). - Tanya Khovanova, Jan 10 2007
(sqrt(21)+5)/2 = 4.7912878... = exp(arccosh(5/2)) = 4 + 3/4 + 3/(4*19) + 3/(19*91) + 3/(91*436) + ... - Gary W. Adamson, Dec 18 2007
a(n+1) is the number of compositions of n when there are 4 types of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(3)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Right-shifted Binomial Transform of the left-shifted A030195. - R. J. Mathar, Oct 15 2012
Values of x (or y) in the solutions to x^2 - 5xy + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
From Wolfdieter Lang, Oct 15 2020: (Start)
All positive solutions of the Diophantine equation x^2 + y^2 - 5*x*y = -3 (see the preceding comment) are given by [x(n) = S(n, 5) - S(n-1, 5), y(n) = x(n-1)], for n =-oo..+oo, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form has discriminant D = +21. There is only this family representing -3 properly with x and y positive, and there are no improper solutions.
See the formula for a(n) = x(n-1), for n >= 1, in terms of S-polynomials below.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
From Wolfdieter Lang, Feb 08 2021: (Start)
All proper and improper solutions of the generalized Pell equation X^2 - 21*Y^2 = +4 are given, up to a combined sign change in X and Y, in terms of x(n) = a(n+1) from the preceding comment by X(n) = x(n) + x(n-1) = S(n-1, 5) - S(n-2, 5) and Y(n) = (x(n) - x(n-1))/3 = S(n-1, 5), for all integer numbers n. For positive integers X(n) = A003501(n) and Y(n) = A004254(n). X(-n) = X(n) and Y(-n) = - Y(n), for n >= 1.
The two conjugated proper families of solutions are given by [X(3*n+1), Y(3*n+1)] and [X(3*n+2), Y(3*n+2)], and the one improper family by [X(3*n), Y(3*n)], for all integer n. This follows from the mentioned paper by Robert K. Moniot. (End)
Equivalent definition: a(n) = ceiling(a(n-1)^2 / a(n-2)), with a(1)=1, a(2)=4, a(3)=19. The problem for USA Olympiad (see Andreescu and Gelca reference) asks to prove that a(n)-1 is always a multiple of 3. - Bernard Schott, Apr 13 2022

References

  • Titu Andreescu and Rǎzvan Gelca, Putnam and Beyond, New York, Springer, 2007, problem 311, pp. 104 and 466-467 (proposed for the USA Mathematical Olympiad by G. Heuer).
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003501, A004254, A030221, A049310, A004254 (partial sums), A290902 (first differences).
Row 5 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    [ n eq 1 select 1 else n eq 2 select 4 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n], n=1..22); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 4}, 22] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    Vec((1-x)/(1-5*x+x^2)+O(x^30)) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Sage
    [lucas_number1(n,5,1)-lucas_number1(n-1,5,1) for n in range(1, 23)] # Zerinvary Lajos, Nov 10 2009
    

Formula

G.f.: x*(1 - x) / (1 - 5*x + x^2). Simon Plouffe in his 1992 dissertation.[offset 0]
For n>1, a(n) = A005386(n) + A005386(n-1). - Floor van Lamoen, Dec 13 2006
a(n) ~ (1/2 + 1/14*sqrt(21))*(1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002[offset 0]
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then q(n, 3)=a(n). - Benoit Cloitre, Nov 10 2002 [offset 0]
For n>0, a(n)*a(n+3) = 15 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*3^k. - Paul Barry, Jul 26 2004[offset 0]
a(n) = (-1)^n*U(2n, i*sqrt(3)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005[offset 0]
[a(n), A004254(n)] = the 2 X 2 matrix [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = ((sqrt(21)-3)*((5+sqrt(21))/2)^n + (sqrt(21)+3)*((5-sqrt(21))/2)^n)/2/sqrt(21). - Seiichi Kirikami, Sep 06 2011
a(n) = S(n-1, 5) - S(n-2, 5) = (-1)^n*S(2*n, i*sqrt(3)), n >= 1, with the Chebyshev S polynomials (A049310), and S(n-1, 5) = A004254(n), for n >= 0. See a Paul Barry formula (offset corrected). - Wolfdieter Lang, Oct 15 2020
From Peter Bala, Feb 10 2024: (Start)
a(n) = a(1-n).
a(n) = A004254(n) + A004254(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 3*A004254(j)*A004254(k). The case j = 1, k = 2 is given above.
a(n)^2 + a(n+1)^2 - 5*a(n)*a(n+1) = - 3.
More generally, a(n)^2 + a(n+k)^2 - (A004254(k+1) - A004254(k-1))*a(n)*a(n+k) = -3*A004254(k)^2. (End)
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/3 (telescoping series: for n >= 2, 3/(a(n) - 1/a(n)) = 1/A004254(n-1) - 1/A004254(n)). - Peter Bala, May 21 2025
E.g.f.: exp(5*x/2)*(7*cosh(sqrt(21)*x/2) - sqrt(21)*sinh(sqrt(21)*x/2))/7 - 1. - Stefano Spezia, Jul 02 2025

Extensions

Additional comments from James Sellers and N. J. A. Sloane, May 03 2002
More terms from Ray Chandler, Nov 17 2003

A030221 Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.

Original entry on oeis.org

1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839
Offset: 0

Views

Author

Keywords

Comments

a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4; lim_{n->oo} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives the present sequence. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651, ... - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030240. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - Peter Bala, Mar 22 2015
From Wolfdieter Lang, Oct 26 2020: (Start)
((-1)^n)*a(n) = X(n) = ((-1)^n)*(S(n, 5) + S(n-1, 5)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 5*X*Y = +7, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-n, x) = - S(n-2, x), for n >= 2.
This binary indefinite quadratic form of discriminant 21, representing 7, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...
		

Crossrefs

Cf. A004253, A004254, A100047, A054493 (partial sums), A049310, A003501 (first differences), A299109 (subsequence of primes).

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Maple
    A030221 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,6]);
        else
            5*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *)
    a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */
  • Sage
    [(lucas_number2(n,5,1)-lucas_number2(n-1,5,1))/3 for n in range(1,22)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 5*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = U(2*n, sqrt(7)/2).
G.f.: (1+x)/(x^2-5*x+1).
a(n) = A004254(n) + A004254(n+1).
a(n) ~ (1/2 + (1/6)*sqrt(21))*((1/2)*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -7). - Benoit Cloitre, Nov 10 2002
A054493(2*n) = a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017
a(n) = S(n, 5) + S(n-1, 5) = S(2*n, sqrt(7)) (see above in terms of U), for n >= 0 with S(-1, 5) = 0, where the coefficients of the Chebyshev S polynomials are given in A049310. - Wolfdieter Lang, Oct 26 2020
From Peter Bala, May 16 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/7 (telescoping series: 7/(a(n) - 1/a(n)) = 1/A004254(n+1) + 1/A004254(n)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(7/3) (telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 7/3 * (1 - 8/A231087(n+1))). (End)

A054493 A Pellian-related recursive sequence.

Original entry on oeis.org

1, 7, 36, 175, 841, 4032, 19321, 92575, 443556, 2125207, 10182481, 48787200, 233753521, 1119980407, 5366148516, 25710762175, 123187662361, 590227549632, 2827950085801, 13549522879375, 64919664311076, 311048798676007, 1490324329068961, 7140572846668800
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

Comments

This is the r=7 member in the r-family of sequences S_r(n+1) defined in A092184 where more information can be found.
Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 7, P2 = 10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Examples

			G.f. = 1 + 7*x + 36*x^2 + 175*x^3 + 841*x^4 + 4032*x^5 + 19321*x^6 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A004254, A100047, A030221 (first differences).

Programs

  • Maple
    A054493 := proc(n)
        option remember;
        if n <= 1 then
            6*n+1 ;
        else
            5*procname(n-1)-procname(n-2)+2 ;
        end if ;
    end proc:
    seq(A054493(n),n=0..10) ; # R. J. Mathar, Apr 16 2018
  • Mathematica
    LinearRecurrence[{6,-6,1},{1,7,36},30] (* Harvey P. Dale, Apr 15 2015 *)
    a[ n_] := ChebyshevU[n, Sqrt[7]/2]^2; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(n, 2, quadgen(28)/2)^2)}; /* Michael Somos, Jan 22 2017 */

Formula

a(n) = 5*a(n-1) - a(n-2) + 2, a(0)=1, a(1)=7.
A004254 = sqrt{21*(A054493)^2+28*(A054493)}/7. - James Sellers, May 10 2000
a(n) = (1/3)*(-2 + ((5+sqrt(21))/2)^n + ((5-sqrt(21))/2)^n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/((1-x)*(1 - 5*x + x^2)) = (1+x)/(1 - 6*x + 6*x^2 - x^3). From the R. Stephan link.
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3), n>=2, a(-1):=0, a(0)=1, a(1)=7.
a(n) = (2*T(n, 5/2)-2)/3, with twice the Chebyshev polynomials of the first kind, 2*T(n, x=5/2)=A003501(n).
a(n) = b(n) + b(n-1), n>=1, with b(n)=A089817(n) the partial sums of S(n, 5)= U(n, 5/2)=A004254(n+1), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind.
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
Let {u(n)} be the Lucas sequence in the quadratic integer ring Z[sqrt(7)] defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = sqrt(7)*u(n-1) - u(n-2) for n >= 2. Then a(n) = u(n)^2.
Equivalently, a(n) = U(n-1,sqrt(7)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = 1/3*( ((sqrt(7) + sqrt(3))/2)^n - ((sqrt(7) - sqrt(3))/2)^n )^2.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -5/2; 1, 7/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(2*n - 1) = 7 * A004254(n)^2, a(2*n) = A030221(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = a(-2-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = 1 + a(n)*(-2 + a(n) - 5*a(n+1)) + a(n+1)*(-2 + a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017

Extensions

Chebyshev comments from Wolfdieter Lang, Sep 10 2004

A003487 a(n) = a(n-1)^2 - 2, with a(0) = 5.

Original entry on oeis.org

5, 23, 527, 277727, 77132286527, 5949389624883225721727, 35395236908668169265765137996816180039862527, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825727
Offset: 0

Views

Author

Keywords

Comments

The next term has 175 digits. - Harvey P. Dale, Feb 19 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001566 (starting with 3), A003010 (starting with 4), A003423 (starting with 6). A001601, A145504.

Programs

  • Maple
    a:= n-> simplify(2*ChebyshevT(2^n, 1/2*5), 'ChebyshevT'):
    seq(a(n), n=0..7);
  • Mathematica
    NestList[#^2-2&,5,10] (* Harvey P. Dale, Feb 19 2015 *)
    a[ n_] := If[ n < 0, 0, 2 ChebyshevT[2^n, 5/2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polchebyshev(2^n, 1, 5/2) * 2)}; /* Michael Somos, Dec 06 2016 */

Formula

a(n) = ceiling(c^(2^n)) where c=(5+sqrt(21))/2 is the largest root of x^2-5x+1=0. - Benoit Cloitre, Dec 03 2002
a(n) = 2*T(2^n,5/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 1/2*(5 - sqrt(21)). Thus 1/2*(5 - sqrt(21)) = 1/5 + 1/(5*23) + 1/(5*23*527) + .... See Liardet and Stambul. Cf. A001566, A003010 and A003423. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
a(n) = ((5 + sqrt(21))/2)^(2^n) + ((5 - sqrt(21))/2)^(2^n).
sqrt(21)/6 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(7/3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145504(n+1). (End)
a(n) = A003501(2^n). - Michael Somos, Dec 06 2016
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 3*Product_{k = 0 ..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 5. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

Extensions

One more term from Harvey P. Dale, Feb 19 2015
Showing 1-10 of 21 results. Next