A174690 Triangle T(n, k) = n!*binomial(n, k) - n! + 1, read by rows.
1, 1, 1, 1, 3, 1, 1, 13, 13, 1, 1, 73, 121, 73, 1, 1, 481, 1081, 1081, 481, 1, 1, 3601, 10081, 13681, 10081, 3601, 1, 1, 30241, 100801, 171361, 171361, 100801, 30241, 1, 1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1, 1, 2903041, 12700801, 30119041, 45360001, 45360001, 30119041, 12700801, 2903041, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 13, 13, 1; 1, 73, 121, 73, 1; 1, 481, 1081, 1081, 481, 1; 1, 3601, 10081, 13681, 10081, 3601, 1; 1, 30241, 100801, 171361, 171361, 100801, 30241, 1; 1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
[Factorial(n)*(Binomial(n,k) -1) + 1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
-
Mathematica
T[n_, k_]:= n!*Binomial[n, k] - n! + 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
-
Sage
flatten([[factorial(n)*(binomial(n,k) -1) + 1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
Formula
T(n, k) = n!*binomial(n, k) - n! + 1.
From G. C. Greubel, Feb 09 2021: (Start)
Sum_{k=0..n} T(n, k) = 2^n * n! - (n+1)! + (n+1) = A000165(n) - (n+1)! + (n+1). (End)
Extensions
Edited by G. C. Greubel, Feb 09 2021