A174723 a(n) = n*(4*n^2 - 3*n + 5)/6.
1, 5, 16, 38, 75, 131, 210, 316, 453, 625, 836, 1090, 1391, 1743, 2150, 2616, 3145, 3741, 4408, 5150, 5971, 6875, 7866, 8948, 10125, 11401, 12780, 14266, 15863, 17575, 19406, 21360, 23441, 25653, 28000, 30486, 33115, 35891, 38818, 41900, 45141
Offset: 1
Examples
From _Bruno Berselli_, Feb 17 2015: (Start) Third differences: 1, 2, 4, 4, 4, 4, 4, (repeat 4) ... (A151798) Second differences: 1, 3, 7, 11, 15, 19, 23, 27, 31, ... (A131098) First differences: 1, 4, 11, 22, 37, 56, 79, 106, 137, ... (A084849) ------------------------------------------------------------------------- This sequence: 1, 5, 16, 38, 75, 131, 210, 316, 453, ... ------------------------------------------------------------------------- Partial sums: 1, 6, 22, 60, 135, 266, 476, 792, 1245, ... (A071239) (End)
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[1, 5, 16, 38]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
-
Maple
A174723 := proc(n) n*(4*n^2-3*n+5)/6 ; end proc: seq( A174723(n),n=1..20) ; # R. J. Mathar, Nov 07 2011
-
Mathematica
Table[n (4n^2-3n+5)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,5,16,38},50] (* Harvey P. Dale, Jan 16 2012 *)
-
PARI
a(n)=n*(4*n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f. x*(1 + x + 2*x^2) / (x-1)^4. - R. J. Mathar, Nov 07 2011
a(1)=1, a(2)=5, a(3)=16, a(4)=38; for n > 4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jan 16 2012
a(n) = A022554(n^2). - Ridouane Oudra, Jun 13 2025
Comments