A084849
a(n) = 1 + n + 2*n^2.
Original entry on oeis.org
1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- W. Burrows and C. Tuffley, Maximising common fixtures in a round robin tournament with two divisions, arXiv:1502.06664 [math.CO], 2015.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph.D. Thesis, Waterford Institute of Technology, 2011.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Irredundant Set.
- Wikipedia, Alexander polynomial and Seifert surface. [See _Peter Bala_'s comment.]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000027,
A000217,
A001844,
A004767 (first differences),
A014105,
A058331,
A060884,
A100036,
A100037,
A100038,
A100039,
A100040,
A100041,
A131901,
A134082,
A174723,
A177342.
-
[1+n+2*n^2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016
-
A084849:=n->1+n+2*n^2: seq(A084849(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016
-
s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 200, 4}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
f[n_]:=(n*(2*n+1)+1);Table[f[n],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
Table[1 + n + 2 n^2, {n, 0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
LinearRecurrence[{3, -3, 1}, {4, 11, 22}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
CoefficientList[Series[(-1 - x - 2 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
-
a(n)=1+n+2*n^2 \\ Charles R Greathouse IV, Sep 24 2015
A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A208825
T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero.
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 4, 5, 5, 1, 5, 8, 16, 7, 1, 6, 13, 38, 45, 18, 1, 7, 18, 75, 155, 167, 32, 1, 8, 25, 131, 415, 828, 609, 84, 1, 9, 32, 210, 905, 2821, 4390, 2471, 185, 1, 10, 41, 316, 1755, 7582, 19657, 25202, 10143, 486, 1, 11, 50, 453, 3085, 17339, 65134, 144871
Offset: 1
All solutions for n=3, k=3:
.-2....0...-1...-1...-3...-2...-3...-2
.-1....0...-1....0....1....1....0....0
..3....0....2....1....2....1....3....2
A177342
a(n) = (4*n^3-3*n^2+5*n-3)/3.
Original entry on oeis.org
1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1
-
[(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
-
I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
-
a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
A211808
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
Original entry on oeis.org
1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1
Northwest corner:
1...5...16...36...69...117...184
1...5...16...36...69...119...190
1...5...16...38...73...123...194
1...5...16...38...75...131...204
1...5...16...38...75...131...210
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k <= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A055232 *)
Table[t[2, n], {n, 1, z}] (* A211806 *)
Table[t[3, n], {n, 1, z}] (* A211807 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A211808 *)
Table[k (4 k^2 - 3 k + 5)/6,
{k, 1, z}] (* row-limit sequence, A174723 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A185872
Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.
Original entry on oeis.org
1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
Offset: 1
Northwest corner:
1, 5, 16, 38, 75
7, 24, 59, 120, 215
22, 54, 141, 262, 440
50, 136, 174, 480, 770
-
f[n_,k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2;
TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185868 *)
Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
FullSimplify[s[n,k]] (*formula for A185872 *)
g[n_]:=Sum[f[n+1-k,k],{k,1,n}];
Table[g[n],{n,50}] (* A185872 *)
TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]
Showing 1-6 of 6 results.
Comments