cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084849 a(n) = 1 + n + 2*n^2.

Original entry on oeis.org

1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009
a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010
Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016
Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017

Crossrefs

Programs

Formula

a(n) = A058331(n) + A000027(n).
G.f.: (1 + x + 2*x^2)/(1 - x)^3.
a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006
From Gary W. Adamson, Oct 07 2007: (Start)
Row sums of triangle A131901.
(a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End)
Equals A134082 * [1,2,3,...]. -
a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010
a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010
a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010
With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012
E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016

A211790 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k

Original entry on oeis.org

1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

...
Let R be the array in A211790 and let R' be the array in A211793. Then R(k,n) + R'(k,n) = 3^(n-1). Moreover, (row k of R) =(row k of A211796) for k>2, by Fermat's last theorem; likewise, (row k of R')=(row k of A211799) for k>2.
...
Generalizations: Suppose that b,c,d are nonzero integers, and let U(k,n) be the number of ordered triples (w,x,y) with all terms in {1,...,n} and b*w*k c*x^k+d*y^k, where the relation is one of these: <, >=, <=, >. What additional assumptions force the limiting row sequence to be essentially one of these: A002412, A000330, A016061, A174723, A051925?
In the following guide to related arrays and sequences, U(k,n) denotes the number of (w,x,y) as described in the preceding paragraph:
first 3 rows limiting row sequence

Examples

			Northwest corner:
  1, 7, 23, 54, 105, 181, 287, 428, 609
  1, 7, 22, 51,  97, 166, 263, 391, 554
  1, 7, 22, 50,  96, 163, 255, 378, 534
  1, 7, 22, 50,  95, 161, 253, 374, 528
  1, 7, 22, 50,  95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A004068 *)
    Table[t[2, n], {n, 1, z}]  (* A211635 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
    Table[n (n + 1) (4 n - 1)/6,
      {n, 1, z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.

A208825 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 5, 5, 1, 5, 8, 16, 7, 1, 6, 13, 38, 45, 18, 1, 7, 18, 75, 155, 167, 32, 1, 8, 25, 131, 415, 828, 609, 84, 1, 9, 32, 210, 905, 2821, 4390, 2471, 185, 1, 10, 41, 316, 1755, 7582, 19657, 25202, 10143, 486, 1, 11, 50, 453, 3085, 17339, 65134, 144871
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Table starts
..1....1.....1......1......1.......1.......1........1........1........1
..2....3.....4......5......6.......7.......8........9.......10.......11
..2....5.....8.....13.....18......25......32.......41.......50.......61
..5...16....38.....75....131.....210.....316......453......625......836
..7...45...155....415....905....1755....3085.....5077.....7891....11761
.18..167...828...2821...7582...17339...35288....65769...114442...188463
.32..609..4390..19657..65134..177097..417204...883409..1720628..3135633
.84.2471.25202.144871.587682.1888153.5134796.12322101.26828152.54037203

Examples

			All solutions for n=3, k=3:
.-2....0...-1...-1...-3...-2...-3...-2
.-1....0...-1....0....1....1....0....0
..3....0....2....1....2....1....3....2
		

Crossrefs

Row 3 is A000982(n+1).
Row 4 is A174723(n+1).

Formula

Empirical for row n:
n=2: a(k) = k + 1.
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = (2/3)*k^3 + (3/2)*k^2 + (11/6)*k + 1.
n=5: a(k) = 3*a(k-1) - a(k-2) - 5*a(k-3) + 5*a(k-4) + a(k-5) - 3*a(k-6) + a(k-7).
n=6: a(k) = (22/15)*k^5 + (11/3)*k^4 + (14/3)*k^3 + (13/3)*k^2 + (43/15)*k + 1.
n=7: a(k) = 4*a(k-1) - 3*a(k-2) - 8*a(k-3) + 14*a(k-4) - 14*a(k-6) + 8*a(k-7) + 3*a(k-8) - 4*a(k-9) + a(k-10).

A177342 a(n) = (4*n^3-3*n^2+5*n-3)/3.

Original entry on oeis.org

1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1

Views

Author

Bruno Berselli, May 06 2010 - Nov 27 2010

Keywords

Comments

This sequence is related to the fourth powers (A000583) by n^4 = n*a(n) - Sum_{i=1..n-1} a(i) - (n-1), with n>1.
Also, n*a(n) - Sum_{i=1..n-1} a(i) provides the first column of A162624 and the second column of A162622 (or A162623). - Bruno Berselli, revised Dec 14 2012

Crossrefs

First differences: 2*A084849.
Partial sums: A178073.

Programs

  • Magma
    [(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
    
  • Magma
    I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
    LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
    

Formula

G.f.: x*(1 + 5*x + x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) - a(-n) = 2*A004006(2n).
a(n) + a(-n) = -A002522(n).
a(n) = 1 + (n-1)*(4*n^2+n+6)/3 = 2*A174723(n)-1.

Extensions

Formulae added and revised by Bruno Berselli, Feb 17 2015

A211808 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y

Original entry on oeis.org

1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 1: A055232
Row 2: A211806
Row 3: A211807
Limiting row sequence: A000330
Let R be the array in A211808 and let R' be the array in A182259. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
1...5...16...36...69...117...184
1...5...16...36...69...119...190
1...5...16...38...73...123...194
1...5...16...38...75...131...204
1...5...16...38...75...131...210
		

Crossrefs

Cf. A211790.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[2 w^k <= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A055232 *)
    Table[t[2, n], {n, 1, z}]  (* A211806 *)
    Table[t[3, n], {n, 1, z}]  (* A211807 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1],
         {n, 1, 12}, {k, 1, n}]] (* A211808 *)
    Table[k (4 k^2 - 3 k + 5)/6,
         {k, 1, z}] (* row-limit sequence, A174723 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A185872 Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.

Original entry on oeis.org

1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,   5,  16,  38,  75
   7,  24,  59, 120, 215
  22,  54, 141, 262, 440
  50, 136, 174, 480, 770
		

Crossrefs

Cf. A185868.
Row 1: A174723; column 1: A002412.

Programs

  • Mathematica
    f[n_,k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185868 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]] (*formula for A185872 *)
    g[n_]:=Sum[f[n+1-k,k],{k,1,n}];
    Table[g[n],{n,50}] (* A185872 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]

Formula

T(n,k) = (k*n/6)*(4*n^2 + 6*n*k + 4*k^2 - 3*n - 9*k + 4), k>=1, n>=1.
Showing 1-6 of 6 results.