cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A381534 A084849 interleaved with positive even numbers.

Original entry on oeis.org

1, 2, 4, 4, 11, 6, 22, 8, 37, 10, 56, 12, 79, 14, 106, 16, 137, 18, 172, 20, 211, 22, 254, 24, 301, 26, 352, 28, 407, 30, 466, 32, 529, 34, 596, 36, 667, 38, 742, 40, 821, 42, 904, 44, 991, 46, 1082, 48, 1177, 50, 1276, 52
Offset: 1

Views

Author

Ali Sada, Feb 26 2025

Keywords

Comments

To construct the sequence, we start with two 1’s on separate lines:
1,
1,
Next, we zigzag natural numbers between the lines, leaving spaces:
1,,3,,5,,7,,9,,11,...
1,2,,4,,6,,8,,10,_...
To fill the spaces, we insert the sum of the numbers in the previous column:
1, 2, 3, 7, 5, 16, 7, 29, 9, 46, 11, 67...
1, 2, 4, 4, 11, 6, 22, 8, 37, 10, 56,...
a(n) is the second sequence. The first sequence is A354008(k), for k > 2.
The first sequence is odd numbers interleaved with A130883. (From M. F. Hasler via Seqfan.)
The numbers we find by adding the columns are: 2,4,7,11,16,22,29,37,46,56,67,…. which is A000124 (n >= 1). The sequence is constructed by alternating the even indexed terms of this sequence (1,4,11,22,37,56…) with the numbers (added by “zigzag” to the second row before we add the columns to get the missing numbers); namely the even numbers 2*n (n >= 1). Therefore, the sequence seems to be A000124(2n) (n>=0), interleaved with A005843(n); (n>=1). (From David James Sycamore via Seqfan.)

Examples

			A084849(0) = 1, so a(1) = 1.
a(2) is the first positive even number, 2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{1,2,4,4,11,6},60] (* Harvey P. Dale, May 09 2025 *)

Formula

G.f.: -x*(-2*x^4+2*x^3-x^2-2*x-1)/(-x^6+3*x^4-3*x^2+1). - Michel Marcus Feb 27 2025

A004767 a(n) = 4*n + 3.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12).
Binary expansion ends 11.
These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro, Dec 16 2004 [This comment needs clarification]
a(n) is the smallest k such that for every r from 0 to 2n - 1 there exist j and i, k >= j > i > 2n - 1, such that j - i == r (mod (2n - 1)), with (k, (2n - 1)) = (j,(2n - 1)) = (i, (2n - 1)) = 1. - Amarnath Murthy, Sep 24 2003
Complement of A004773. - Reinhard Zumkeller, Aug 29 2005
Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n + 2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008
Solutions to the equation x^(2*x) = 3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010
Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010
First differences of A084849. - Reinhard Zumkeller, Apr 02 2011
Numbers n such that {1, 2, 3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011
Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012
The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013
A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013
All triangular numbers in the sequence are congruent to {3, 7} mod 8. - Ivan N. Ianakiev, Nov 12 2013
Apart from the initial term, length of minimal path on an n-dimensional cubic lattice (n > 1) of side length 2, until a self-avoiding walk gets stuck. Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n - 1 points, resulting in path length 4n - 2 with a final step connecting the center, for a total path length of 4n - 1, comprising 4n points. - Matthew Lehman, Dec 10 2013
a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and greater than a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016

Examples

			G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.

Crossrefs

Cf. A017101 and A004771 (bisection: 3 and 7 mod 8).
Cf. A016838 (square).

Programs

Formula

G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008
a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010
a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010
a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011
a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012
a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013
a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013
a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (3 + 4*x)*exp(x).
Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2) - 1))/(4*sqrt(2)) = A181049. (End)

A014105 Second hexagonal numbers: a(n) = n*(2*n + 1).

Original entry on oeis.org

0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Note that when starting from a(n)^2, equality holds between series of first n+1 and next n consecutive squares: a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2*n)^2; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Henry Bottomley, Jan 22 2001; with typos fixed by Zak Seidov, Sep 10 2015
a(n) = sum of second set of n consecutive even numbers - sum of the first set of n consecutive odd numbers: a(1) = 4-1, a(3) = (8+10+12) - (1+3+5) = 21. - Amarnath Murthy, Nov 07 2002
Partial sums of odd numbers 3 mod 4, that is, 3, 3+7, 3+7+11, ... See A001107. - Jon Perry, Dec 18 2004
If Y is a fixed 3-subset of a (2n+1)-set X then a(n) is the number of (2n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
More generally (see the first comment), for n > 0, let b(n,k) = a(n) + k*(4*n + 1). Then b(n,k)^2 + (b(n,k) + 1)^2 + ... + (b(n,k) + n)^2 = (b(n,k) + n + 1 + 2*k)^2 + ... + (b(n,k) + 2*n + 2*k)^2 + k^2; e.g., if n = 3 and k = 2, then b(n,k) = 47 and 47^2 + ... + 50^2 = 55^2 + ... + 57^2 + 2^2. - Charlie Marion, Jan 01 2011
Sequence found by reading the line from 0, in the direction 0, 10, ..., and the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Nov 09 2011
a(n) is the number of positions of a domino in a pyramidal board with base 2n+1. - César Eliud Lozada, Sep 26 2012
Differences of row sums of two consecutive rows of triangle A120070, i.e., first differences of A016061. - J. M. Bergot, Jun 14 2013 [In other words, the partial sums of this sequence give A016061. - Leo Tavares, Nov 23 2021]
a(n)*Pi is the total length of half circle spiral after n rotations. See illustration in links. - Kival Ngaokrajang, Nov 05 2013
For corresponding sums in first comment by Henry Bottomley, see A059255. - Zak Seidov, Sep 10 2015
a(n) also gives the dimension of the simple Lie algebras B_n (n >= 2) and C_n (n >= 3). - Wolfdieter Lang, Oct 21 2015
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for unsigned A130757, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 13 2015
Partial sums of squares with alternating signs, ending in an even term: a(n) = 0^2 - 1^2 +- ... + (2*n)^2, cf. Example & Formula from Berselli, 2013. - M. F. Hasler, Jul 03 2018
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central peak and the largest Dyck path has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
a(n) is the area of a triangle with vertices at (0,0), (2*n+1, 2*n), and ((2*n+1)^2, 4*n^2). - Art Baker, Dec 12 2018
This sequence is the largest subsequence of A000217 such that gcd(a(n), 2*n) = a(n) mod (2*n) = n, n > 0 up to a given value of n. It is the interleave of A033585 (a(n) is even) and A033567 (a(n) is odd). - Torlach Rush, Sep 09 2019
A generalization of Hasler's Comment (Jul 03 2018) follows. Let P(k,n) be the n-th k-gonal number. Then for k > 1, partial sums of {P(k,n)} with alternating signs, ending in an even term, = n*((k-2)*n + 1). - Charlie Marion, Mar 02 2021
Let U_n(H) = {A in M_n(H): A*A^H = I_n} be the group of n X n unitary matrices over the quaternions (A^H is the conjugate transpose of A. Note that over the quaternions we still have A*A^H = I_n <=> A^H*A = I_n by mapping A and A^H to (2n) X (2n) complex matrices), then a(n) is the dimension of its Lie algebra u_n(H) = {A in M_n(H): A + A^H = 0} as a real vector space. A basis is given by {(E_{st}-E_{ts}), i*(E_{st}+E_{ts}), j*(E_{st}+E_{ts}), k*(E_{st}+E_{ts}): 1 <= s < t <= n} U {i*E_{tt}, j*E_{tt}, k*E_{tt}: t = 1..n}, where E_{st} is the matrix with all entries zero except that its (st)-entry is 1. - Jianing Song, Apr 05 2021

Examples

			For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Second column of array A094416.
Equals A033586(n) divided by 4.
See Comments of A132124.
Second n-gonal numbers: A005449, A147875, A045944, A179986, A033954, A062728, A135705.
Row sums in triangle A253580.

Programs

Formula

a(n) = 3*Sum_{k=1..n} tan^2(k*Pi/(2*(n + 1))). - Ignacio Larrosa Cañestro, Apr 17 2001
a(n)^2 = n*(a(n) + 1 + a(n) + 2 + ... + a(n) + 2*n); e.g., 10^2 = 2*(11 + 12 + 13 + 14). - Charlie Marion, Jun 15 2003
From N. J. A. Sloane, Sep 13 2003: (Start)
G.f.: x*(3 + x)/(1 - x)^3.
E.g.f.: exp(x)*(3*x + 2*x^2).
a(n) = A000217(2*n) = A000384(-n). (End)
a(n) = A084849(n) - 1; A100035(a(n) + 1) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A126890(n, k) + A126890(n, n-k), 0 <= k <= n. - Reinhard Zumkeller, Dec 30 2006
a(2*n) = A033585(n); a(3*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = a(n-1) + 4*n - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = Sum_{k=0.2*n} (-1)^k*k^2. - Bruno Berselli, Aug 29 2013
a(n) = A242342(2*n + 1). - Reinhard Zumkeller, May 11 2014
a(n) = Sum_{k=0..2} C(n-2+k, n-2) * C(n+2-k, n), for n > 1. - J. M. Bergot, Jun 14 2014
a(n) = floor(Sum_{j=(n^2 + 1)..((n+1)^2 - 1)} sqrt(j)). Fractional portion of each sum converges to 1/6 as n -> infinity. See A247112 for a similar summation sequence on j^(3/2) and references to other such sequences. - Richard R. Forberg, Dec 02 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, with a(0) = 0, a(1) = 3, and a(2) = 10. - Harvey P. Dale, Feb 10 2015
Sum_{n >= 1} 1/a(n) = 2*(1 - log(2)) = 0.61370563888010938... (A188859). - Vaclav Kotesovec, Apr 27 2016
From Wolfdieter Lang, Apr 27 2018: (Start)
a(n) = trinomial(2*n, 2) = trinomial(2*n, 2*(2*n-1)), for n >= 1, with the trinomial irregular triangle A027907; i.e., trinomial(n,k) = A027907(n,k).
a(n) = (1/Pi) * Integral_{x=0..2} (1/sqrt(4 - x^2)) * (x^2 - 1)^(2*n) * R(4*(n-1), x), for n >= 0, with the R polynomial coefficients given in A127672, and R(-m, x) = R(m, x). [See Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 2, rewritten with x = 2*cos(phi).] (End)
a(n) = A002943(n)/2. - Ralf Steiner, Jul 23 2019
a(n) = A000290(n) + A002378(n). - Torlach Rush, Nov 02 2020
a(n) = A003215(n) - A000290(n+1). See Squared Hexagons illustration. Leo Tavares, Nov 23 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) - 2. - Amiram Eldar, Nov 28 2021

Extensions

Link added and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A130883 a(n) = 2*n^2 - n + 1.

Original entry on oeis.org

1, 2, 7, 16, 29, 46, 67, 92, 121, 154, 191, 232, 277, 326, 379, 436, 497, 562, 631, 704, 781, 862, 947, 1036, 1129, 1226, 1327, 1432, 1541, 1654, 1771, 1892, 2017, 2146, 2279, 2416, 2557, 2702, 2851, 3004, 3161, 3322, 3487, 3656, 3829, 4006, 4187, 4372, 4561
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Comments

Maximum number of regions determined by n bent lines (or angular sectors). See Concrete Mathematics reference.
A "bent line" may also be regarded as a "long-legged letter V", meaning a letter V with both line segments extended to infinity. See A117625 for the analogous sequence for a long-legged Z. - N. J. A. Sloane, Jun 18 2025
a(n)*Pi is the total length of half circle spiral after n rotations. It is formed as irregular spiral with two center points. At the 2nd stage, there are two alternatives: (1) select 2nd half circle radius, r2 = 2, the sequence will be A014105 or (2) select r2 = 0, the sequence will be A130883. See illustration in links. - Kival Ngaokrajang, Jan 19 2014
A128218(a(n)) = 2*n+1 and A128218(m) != 2*n+1 for m < a(n). - Reinhard Zumkeller, Jun 20 2015

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA, 1994, pp. 7-8, and Problem 1.18, pages 19 and 500.

Crossrefs

See also A117625.
A row of the array in A386478.

Programs

Formula

a(n) = a(n-1) + 4*n - 3 for n > 0, a(0)=1. - Vincenzo Librandi, Nov 23 2010
a(n) = A000124(2*n) - 2*n. - Geoffrey Critzer, Mar 30 2011
O.g.f.: (4*x^2-x+1)/(1-x)^3. - Geoffrey Critzer, Mar 30 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Eric Werley, Jun 27 2011
a(0)=1, a(1)=2, a(2)=7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 20 2011
a(n) = A128918(2*n). - Reinhard Zumkeller, Oct 27 2013
a(n) = 1 + A000384(n). - Omar E. Pol, Apr 27 2017
E.g.f.: (2*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A152947(2*n+1). - Franck Maminirina Ramaharo, Jan 10 2018

A100037 Positions of occurrences of the natural numbers as a second subsequence in A100035.

Original entry on oeis.org

4, 9, 18, 31, 48, 69, 94, 123, 156, 193, 234, 279, 328, 381, 438, 499, 564, 633, 706, 783, 864, 949, 1038, 1131, 1228, 1329, 1434, 1543, 1656, 1773, 1894, 2019, 2148, 2281, 2418, 2559, 2704, 2853, 3006, 3163, 3324, 3489, 3658, 3831, 4008, 4189, 4374, 4563
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

For n > 1, A100035(a(n)) = n and A100035(m) != n for a(n-1) <= m < a(n);
A100036(n) < a(n) < A100038(n) < A100039(n).

Examples

			First terms (10 = A, 11 = B, 12 = C) of A100035(a(n)):
...1....2........3............4................5......
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B;
a(1) = A084849(2) = 4, A100035(4) = 1;
a(2) = A014107(2) = 9, A100035(9) = 2;
a(3) = A033537(3) = 18, A100035(18) = 3;
a(4) = A100040(4) = 31, A100035(31) = 4;
a(5) = A100041(5) = 48, A100035(48) = 5.
		

Crossrefs

Formula

a(n) = 2*n^2 - n + 3 (conjectured). - Ralf Stephan, May 15 2007

A100038 Positions of occurrences of the natural numbers as third subsequence in A100035.

Original entry on oeis.org

11, 20, 33, 50, 71, 96, 125, 158, 195, 236, 281, 330, 383, 440, 501, 566, 635, 708, 785, 866, 951, 1040, 1133, 1230, 1331, 1436, 1545, 1658, 1775, 1896, 2021, 2150, 2283, 2420, 2561, 2706, 2855, 3008, 3165, 3326, 3491, 3660, 3833, 4010, 4191, 4376, 4565
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < a(n) < A100039(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
..........1........2............3................4...
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(3) = 11, A100035(11) = 1;
a(2) = A014107(3) = 20, A100035(20) = 2;
a(3) = A033537(4) = 33, A100035(33) = 3;
a(4) = A100040(5) = 50, A100035(50) = 4;
a(5) = A100041(6) = 71, A100035(71) = 5.
		

Crossrefs

Cf. A100037.

Formula

a(n) = 2*n^2 + 3*n + 6 (conjectured). - Ralf Stephan, May 15 2007

A060884 a(n) = n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

1, 1, 11, 61, 205, 521, 1111, 2101, 3641, 5905, 9091, 13421, 19141, 26521, 35855, 47461, 61681, 78881, 99451, 123805, 152381, 185641, 224071, 268181, 318505, 375601, 440051, 512461, 593461, 683705, 783871, 894661, 1016801, 1151041, 1298155, 1458941, 1634221
Offset: 0

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_10(n), where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 5 between any two distinct nodes of the complete graph K_{n+1} (n>=1). Example: a(1)=1 because in the complete graph AB we have only one walk of length 5 between A and B: ABABAB. - Emeric Deutsch, Apr 01 2004
t^4-t^3+t^2-t+1 is the Alexander polynomial (with negative powers cleared) of the cinquefoil knot (torus knot T(5,2)). The associated Seifert matrix S is [[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]]. a(n) = det(transpose(S)-n*S). Cf. A084849. - Peter Bala, Mar 14 2012
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^5 consecutive integers that equals n^10. - Patrick J. McNab, Dec 26 2016

Crossrefs

Programs

  • Maple
    A060884 := proc(n)
            numtheory[cyclotomic](10,n) ;
    end proc:
    seq(A060884(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Table[1 + Fold[(-1)^(#2)*n^(#2) + #1 &, Range[0, 4]], {n, 0, 33}] (* or *)
    CoefficientList[Series[(1 - 4 x + 16 x^2 + 6 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 33}], x] (* Michael De Vlieger, Dec 26 2016 *)
    Table[n^4-n^3+n^2-n+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,1,11,61,205},40] (* Harvey P. Dale, Sep 08 2018 *)
  • PARI
    a(n) = { n^4 - n^3 + n^2 - n + 1 } \\ Harry J. Smith, Jul 13 2009

Formula

G.f.: (1-4*x+16*x^2+6*x^3+5*x^4)/(1-x)^5. - Emeric Deutsch, Apr 01 2004
E.g.f.: exp(x)*(1 + 5*x^2 + 5*x^3 + x^4). - Stefano Spezia, Apr 22 2023

A100039 Positions of occurrences of the natural numbers as fourth subsequence in A100035.

Original entry on oeis.org

22, 35, 52, 73, 98, 127, 160, 197, 238, 283, 332, 385, 442, 503, 568, 637, 710, 787, 868, 953, 1042, 1135, 1232, 1333, 1438, 1547, 1660, 1777, 1898, 2023, 2152, 2285, 2422, 2563, 2708, 2857, 3010, 3167, 3328, 3493, 3662, 3835, 4012, 4193, 4378, 4567, 4760
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < A100038(n) < a(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
.....................1............2................3....
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(4) = 22, A100035(22) = 1;
a(2) = A014107(4) = 35, A100035(35) = 2;
a(3) = A033537(5) = 52, A100035(52) = 3;
a(4) = A100040(6) = 73, A100035(73) = 4;
a(5) = A100041(7) = 98, A100035(98) = 5.
		

Formula

2n^2 + 7n + 13 (conjectured). - Ralf Stephan, May 15 2007

A100040 a(n) = 2*n^2 + n - 5.

Original entry on oeis.org

-5, -2, 5, 16, 31, 50, 73, 100, 131, 166, 205, 248, 295, 346, 401, 460, 523, 590, 661, 736, 815, 898, 985, 1076, 1171, 1270, 1373, 1480, 1591, 1706, 1825, 1948, 2075, 2206, 2341, 2480, 2623, 2770, 2921, 3076, 3235, 3398, 3565, 3736, 3911, 4090, 4273
Offset: 0

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

a(n) is the result of taking five consecutive numbers starting at n-2, then adding the products of the first and the last and of the second with the fourth and finally adding the middle term. That is, a(n) = (n^2-4) + (n^2-1) + n. - J. M. Bergot, Mar 06 2018

Crossrefs

Programs

Formula

A100035(a(n)) = 4 for n>3;
a(n) = A014105(n) - 5 = A084849(n) - 6 = A100041(n) + 2.
a(n) = 2*a(n-1)-a(n-2)+4; a(0)=-5, a(1)=-2. - Vincenzo Librandi, Dec 26 2010
G.f.: (-5 + 13*x - 4*x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 25 2011
E.g.f.: (2*x^2 + 3*x - 5)*exp(x). - G. C. Greubel, Jul 15 2017

A100041 a(n) = 2*n^2 + n - 7.

Original entry on oeis.org

-7, -4, 3, 14, 29, 48, 71, 98, 129, 164, 203, 246, 293, 344, 399, 458, 521, 588, 659, 734, 813, 896, 983, 1074, 1169, 1268, 1371, 1478, 1589, 1704, 1823, 1946, 2073, 2204, 2339, 2478, 2621, 2768, 2919, 3074, 3233, 3396, 3563, 3734, 3909, 4088, 4271, 4458, 4649
Offset: 0

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Crossrefs

Programs

Formula

A100035(a(n)) = 5 for n>3.
a(n) = A014105(n) - 7 = A084849(n) - 8 = A100040(n) - 2.
From G. C. Greubel, Jul 15 2017: (Start)
G.f.: (7 - 17 x + 6 x^2)/(-1 + x)^3.
E.g.f.: (2*x^2 + 3*x - 7)*exp(x). (End)
Showing 1-10 of 41 results. Next