cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A084849 a(n) = 1 + n + 2*n^2.

Original entry on oeis.org

1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009
a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010
Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016
Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017

Crossrefs

Programs

Formula

a(n) = A058331(n) + A000027(n).
G.f.: (1 + x + 2*x^2)/(1 - x)^3.
a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006
From Gary W. Adamson, Oct 07 2007: (Start)
Row sums of triangle A131901.
(a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End)
Equals A134082 * [1,2,3,...]. -
a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010
a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010
a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010
With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012
E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016

A246392 Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Magma
    [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
  • Maple
    A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
  • Mathematica
    Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
    

A104238 Positive integers n such that n^5 + 1 is semiprime.

Original entry on oeis.org

2, 10, 12, 16, 22, 126, 136, 180, 256, 268, 276, 366, 388, 396, 438, 462, 606, 642, 652, 658, 676, 738, 760, 768, 982, 1012, 1068, 1116, 1230, 1276, 1320, 1452, 1488, 1530, 1618, 1692, 1698, 1752, 1846, 1948, 1996, 2080, 2112, 2160, 2332, 2392, 2440, 2520
Offset: 1

Views

Author

Jonathan Vos Post, Apr 02 2005

Keywords

Comments

n^5+1 can only be prime when n = 1, n^5+1 = 2. This is because of the polynomial factorization n^5+1 = (n+1) * (n^4 - n^3 + n^2 - n + 1) = (n+1)*A060884(n). Hence after the initial n=1 prime, the binomial can at best be semiprime and that only when both (n+1) and (n^4 - n^3 + n^2 - n + 1) are primes.

Examples

			n n^5+1 = (n+1) * (n^4 - n^3 + n^2 - n + 1)
2 33 = 3 * 11
10 100001 = 11 * 9091
12 248833 = 13 * 19141
16 1048577 = 17 * 61681
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2600],PrimeOmega[#^5+1]==2&] (* Harvey P. Dale, May 20 2011 *)
    Select[Range[200000], PrimeQ[# + 1] && PrimeQ[(#^5 + 1)/(# + 1)] &] (* Robert Price, Mar 09 2015 *)

Formula

a(n)^5 + 1 is semiprime. a(n)+1 is prime and a(n)^4 - a(n)^3 + a(n)^2 - a(n) + 1 is prime.

A269442 a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

Programs

  • GAP
    List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Table[Cyclotomic[17, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...

A062158 a(n) = n^3 - n^2 + n - 1 = (n-1) * (n^2 + 1).

Original entry on oeis.org

-1, 0, 5, 20, 51, 104, 185, 300, 455, 656, 909, 1220, 1595, 2040, 2561, 3164, 3855, 4640, 5525, 6516, 7619, 8840, 10185, 11660, 13271, 15024, 16925, 18980, 21195, 23576, 26129, 28860, 31775, 34880, 38181, 41684, 45395, 49320, 53465, 57836, 62439, 67280, 72365, 77700, 83291, 89144, 95265, 101660
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

Number of walks of length 4 between any two distinct vertices of the complete graph K_{n+1} (n >= 1). Example: a(2) = 5 because in the complete graph ABC we have the following walks of length 4 between A and B: ABACB, ABCAB, ACACB, ACBAB and ACBCB. - Emeric Deutsch, Apr 01 2004
1/a(n) for n >= 2, is in base n given by 0.repeat(0,0,1,1), due to (1/n^3 + 1/n^4)*(1/(1-1/n^4)) = 1/((n-1)*(n^2+1)). - Wolfdieter Lang, Jun 20 2014
For n>3, a(n) is 1220 in base n-1. - Bruno Berselli, Jan 26 2016
For odd n, a(n) * (n+1) / 2 + 1 also represents the first integer in a sum of n^4 consecutive integers that equals n^8. - Patrick J. McNab, Dec 26 2016

Examples

			a(4) = 4^3 - 4^2 + 4 - 1 = 64 - 16 + 4 - 1 = 51.
		

Crossrefs

Programs

  • Magma
    [n^3 - n^2 + n - 1 : n in [0..50]]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    [seq(n^3-n^2+n-1,n=0..49)]; # Zerinvary Lajos, Jun 29 2006
    a:=n->sum(1+sum(n, k=1..n), k=2..n):seq(a(n), n=0...43); # Zerinvary Lajos, Aug 24 2008
  • Mathematica
    Table[n^3 - n^2 + n - 1, {n, 0, 49}] (* Alonso del Arte, Apr 30 2014 *)
  • PARI
    a(n) = { n*(n*(n - 1) + 1) - 1 } \\ Harry J. Smith, Aug 02 2009
    

Formula

a(n) = round(n^4/(n+1)) for n >= 2.
a(n) = A062160(n, 4), for n > 2.
G.f.: (4*x-1)*(1+x^2)/(1-x)^4 (for the signed sequence). - Emeric Deutsch, Apr 01 2004
a(n) = floor(n^5/(n^2+n)) for n > 0. - Gary Detlefs, May 27 2010
a(n) = -A053698(-n). - Bruno Berselli, Jan 26 2016
Sum_{n>=2} 1/a(n) = A268086. - Amiram Eldar, Nov 18 2020
E.g.f.: exp(x)*(x^3 + 2*x^2 + x - 1). - Stefano Spezia, Apr 22 2023

Extensions

More terms from Emeric Deutsch, Apr 01 2004

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A059839 a(n) = n^8 + n^6 + n^4 + n^2 + 1.

Original entry on oeis.org

1, 5, 341, 7381, 69905, 406901, 1727605, 5884901, 17043521, 43584805, 101010101, 216145205, 432988561, 820586261, 1483357205, 2574332101, 4311810305, 6999978821, 11054078101, 17030739605, 25664160401, 37908820405, 54989488181, 78459301541, 110266749505, 152832422501
Offset: 0

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[n^(2*Range[4])]+1,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,5,341,7381,69905,406901,1727605,5884901,17043521},30] (* Harvey P. Dale, Jan 02 2015 *)
  • PARI
    a(n) = { my(f=n^2); f^4 + f^3 + f^2 + f + 1 } \\ Harry J. Smith, Jun 29 2009

Formula

a(n) = (n^4-n^3+n^2-n+1)*(n^4+n^3+n^2+n+1) = A060884(n)*A053699(n). a(n) = (n^10-1)/(n^2-1), n>1. - Alexander Adamchuk, Apr 13 2006
G.f.: -(5*x^8 +296*x^7 +4492*x^6 +15332*x^5 +15458*x^4 +4408*x^3 +332*x^2 -4*x +1)/ (x-1)^9. - Colin Barker, Nov 05 2012

A062159 a(n) = n^5 - n^4 + n^3 - n^2 + n - 1.

Original entry on oeis.org

-1, 0, 21, 182, 819, 2604, 6665, 14706, 29127, 53144, 90909, 147630, 229691, 344772, 501969, 711914, 986895, 1340976, 1790117, 2352294, 3047619, 3898460, 4929561, 6168162, 7644119, 9390024, 11441325, 13836446, 16616907, 19827444, 23516129, 27734490, 32537631, 37984352, 44137269
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

Number of walks of length 6 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - Emeric Deutsch, Apr 01 2004
For odd n, a(n) * (n+1) / 2 + 1 also represents the first integer in a sum of n^6 consecutive integers that equals n^12. - Patrick J. McNab, Dec 26 2016

Examples

			a(4) = 4^5 - 4^4 + 4^3 - 4^2 + 4 - 1 = 1024 - 256 + 64 - 16 + 4 - 1 = 819.
		

Crossrefs

Programs

Formula

a(n) = round(n^6/(n+1)) for n>2 = A062160(n,6).
G.f.: (76x^3 + 6x^2 + 27x^4 + 6x^5 + 6x - 1)/(1-x)^6 (for the signed sequence). - Emeric Deutsch, Apr 01 2004
a(n) = (n^6 - 1)/(n+1). a(n) = (n-1)(n^2 - n + 1)(n^2 + n + 1) = (n-1)*A002061(n)*A002061(n+1). - Alexander Adamchuk, Apr 12 2006
a(0)=-1, a(1)=0, a(2)=21, a(3)=182, a(4)=819, a(5)=2604, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Dec 20 2015
E.g.f.: exp(x)*(x^5 + 9*x^4 + 20*x^3 + 10*x^2 + x - 1). - Stefano Spezia, Apr 22 2023

Extensions

More terms from Emeric Deutsch, Apr 01 2004

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A259257 Primes of the form n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

11, 61, 521, 9091, 13421, 19141, 61681, 152381, 185641, 224071, 1151041, 1824841, 2031671, 3341101, 4778021, 5200081, 8987221, 25058741, 31224301, 32928901, 40454321, 42521761, 150451621, 212601841, 250062751, 292268861, 310565641, 329708341, 339604921
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is n^4-n^3+n^2-n+1]; // Vincenzo Librandi, Jun 23 2015
    
  • Mathematica
    Select[Table[Cyclotomic[10, n], {n, 0, 200}], PrimeQ]
    Select[Table[n^4 - n^3 + n^2 - n + 1, {n, 200}], PrimeQ] (* Vincenzo Librandi, Jun 23 2015 *)
  • PARI
    lista(nn) = for (n=1, nn, if (isprime(p=polcyclo(10, n)), print1(p, ", "))); \\ Michel Marcus, Jun 23 2015

Formula

a(n) = A246392(A060884(n)).
Showing 1-10 of 16 results. Next