cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246392 Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Magma
    [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
  • Maple
    A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
  • Mathematica
    Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
    

A060884 a(n) = n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

1, 1, 11, 61, 205, 521, 1111, 2101, 3641, 5905, 9091, 13421, 19141, 26521, 35855, 47461, 61681, 78881, 99451, 123805, 152381, 185641, 224071, 268181, 318505, 375601, 440051, 512461, 593461, 683705, 783871, 894661, 1016801, 1151041, 1298155, 1458941, 1634221
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_10(n), where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 5 between any two distinct nodes of the complete graph K_{n+1} (n>=1). Example: a(1)=1 because in the complete graph AB we have only one walk of length 5 between A and B: ABABAB. - Emeric Deutsch, Apr 01 2004
t^4-t^3+t^2-t+1 is the Alexander polynomial (with negative powers cleared) of the cinquefoil knot (torus knot T(5,2)). The associated Seifert matrix S is [[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]]. a(n) = det(transpose(S)-n*S). Cf. A084849. - Peter Bala, Mar 14 2012
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^5 consecutive integers that equals n^10. - Patrick J. McNab, Dec 26 2016

Crossrefs

Programs

  • Maple
    A060884 := proc(n)
            numtheory[cyclotomic](10,n) ;
    end proc:
    seq(A060884(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Table[1 + Fold[(-1)^(#2)*n^(#2) + #1 &, Range[0, 4]], {n, 0, 33}] (* or *)
    CoefficientList[Series[(1 - 4 x + 16 x^2 + 6 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 33}], x] (* Michael De Vlieger, Dec 26 2016 *)
    Table[n^4-n^3+n^2-n+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,1,11,61,205},40] (* Harvey P. Dale, Sep 08 2018 *)
  • PARI
    a(n) = { n^4 - n^3 + n^2 - n + 1 } \\ Harry J. Smith, Jul 13 2009

Formula

G.f.: (1-4*x+16*x^2+6*x^3+5*x^4)/(1-x)^5. - Emeric Deutsch, Apr 01 2004
E.g.f.: exp(x)*(1 + 5*x^2 + 5*x^3 + x^4). - Stefano Spezia, Apr 22 2023
Showing 1-2 of 2 results.