A174738 Partial sums of floor(n/7).
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0
Examples
a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
List([0..60], n-> Int((n-2)*(n-3)/14)); # G. C. Greubel, Aug 31 2019
-
Magma
[Round(n*(n-5)/14): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
Maple
A174738 := proc(n) round(n*(n-5)/14) ; end proc: seq(A174738(n),n=0..30) ;
-
Mathematica
Table[Floor[(n - 2)*(n - 3)/14], {n,0,60}] (* G. C. Greubel, Dec 13 2016 *)
-
PARI
a(n)=(n-2)*(n-3)\14 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[floor((n-2)*(n-3)/14) for n in (0..60)] # G. C. Greubel, Aug 31 2019
Formula
a(n) = round(n*(n-5)/14).
a(n) = floor((n-2)*(n-3)/14).
a(n) = ceiling((n+1)*(n-6)/14).
a(n) = a(n-7) + n - 6, n > 6.
a(n) = +2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Nov 30 2010
G.f.: x^7/( (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1-x)^3 ). - R. J. Mathar, Nov 30 2010
Comments