cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053144 Cototient of the n-th primorial number.

Original entry on oeis.org

1, 4, 22, 162, 1830, 24270, 418350, 8040810, 186597510, 5447823150, 169904387730, 6317118448410, 260105476071210, 11228680258518030, 529602053223499410, 28154196550210460730, 1665532558389396767070
Offset: 1

Views

Author

Labos Elemer, Feb 28 2000

Keywords

Comments

a(n) > A005367(n), a(n) > A002110(n)/2.
Limit_{n->oo} a(n)/A002110(n) = 1 because (in the limit) the quotient is the probability that a randomly selected integer contains at least one of the first n primes in its factorization. - Geoffrey Critzer, Apr 08 2010

Examples

			In the reduced residue system of q(4) = 2*3*5*7 - 210 the number of coprimes to 210 is 48, while a(4) = 210 - 48 = 162 is the number of values divisible by one of the prime factors of q(4).
		

Crossrefs

Cf. A000040 (prime numbers).
Column 1 of A281891.

Programs

  • Mathematica
    Abs[Table[ Total[Table[(-1)^(k + 1)* Total[Apply[Times, Subsets[Table[Prime[n], {n, 1, m}], {k}], 2]], {k, 0, m - 1}]], {m, 1, 22}]] (* Geoffrey Critzer, Apr 08 2010 *)
    Array[# - EulerPhi@ # &@ Product[Prime@ i, {i, #}] &, 17] (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)) - prod(k=1, n, prime(k)-1); \\ Michel Marcus, Feb 08 2019

Formula

a(n) = A051953(A002110(n)) = A002110(n) - A005867(n).
a(n) = a(n-1)*A000040(n) + A005867(n-1). - Bob Selcoe, Feb 21 2016
a(n) = (1/A000040(n+1) - A038110(n+1)/A038111(n+1))*A002110(n+1). - Jamie Morken, Feb 08 2019
a(n) = A161527(n)*A002110(n)/A060753(n+1). - Jamie Morken, May 13 2022

A293558 Triangle T(n,k) read by rows: T(n,k) = A005867(k-1)*A002110(n)/A002110(k).

Original entry on oeis.org

1, 3, 1, 15, 5, 2, 105, 35, 14, 8, 1155, 385, 154, 88, 48, 15015, 5005, 2002, 1144, 624, 480, 255255, 85085, 34034, 19448, 10608, 8160, 5760, 4849845, 1616615, 646646, 369512, 201552, 155040, 109440, 92160
Offset: 1

Views

Author

Bob Selcoe, Oct 11 2017

Keywords

Comments

T(n,k) is the triangle in A174909 with reversed row order. (See that sequence for additional comments).
Row sums = A053144(n) = A002110(n) - T(n+1,n+1).
T(n,k) = number of terms with smallest prime factor prime(k) contained in primorial(n) consecutive numbers, k <= n. For example, T(5,4) = 88, so there are 88 terms with smallest prime factor 7 in any sequence of 2310 consecutive numbers.

Examples

			Triangle starts:
n/k  1     2    3    4    5    6
1    1
2    3     1
3    15    5    2
4    105   35   14   8
5    1155  385  154  88   48
6    15015 5005 2002 1144 624 480
T(5,3) = 154: A005867(2) = 2, A002110(5) = 2310, A002110(3) = 30; 2*2310/30 = 154.
		

Crossrefs

Cf. A000040 (prime numbers), A002110, A005867, A053144, A174909 (this triangle with reversed row order).

Programs

  • Mathematica
    Table[#1 Product[EulerPhi@ Prime@ i, {i, k - 1}]/#2 & @@ Map[Product[ Prime@ i, {i, #}] &, {n, k}], {n, 8}, {k, n}] // Flatten (* Michael De Vlieger, Oct 12 2017 *)
Showing 1-2 of 2 results.