A053144
Cototient of the n-th primorial number.
Original entry on oeis.org
1, 4, 22, 162, 1830, 24270, 418350, 8040810, 186597510, 5447823150, 169904387730, 6317118448410, 260105476071210, 11228680258518030, 529602053223499410, 28154196550210460730, 1665532558389396767070
Offset: 1
In the reduced residue system of q(4) = 2*3*5*7 - 210 the number of coprimes to 210 is 48, while a(4) = 210 - 48 = 162 is the number of values divisible by one of the prime factors of q(4).
-
Abs[Table[ Total[Table[(-1)^(k + 1)* Total[Apply[Times, Subsets[Table[Prime[n], {n, 1, m}], {k}], 2]], {k, 0, m - 1}]], {m, 1, 22}]] (* Geoffrey Critzer, Apr 08 2010 *)
Array[# - EulerPhi@ # &@ Product[Prime@ i, {i, #}] &, 17] (* Michael De Vlieger, Feb 17 2019 *)
-
a(n) = prod(k=1, n, prime(k)) - prod(k=1, n, prime(k)-1); \\ Michel Marcus, Feb 08 2019
A174909
Triangle T(n,i) whose n-th row gives the number of numbers in any prime(n)# consecutive numbers whose smallest prime factor is prime(n-i+1).
Original entry on oeis.org
1, 1, 3, 2, 5, 15, 8, 14, 35, 105, 48, 88, 154, 385, 1155, 480, 624, 1144, 2002, 5005, 15015, 5760, 8160, 10608, 19448, 34034, 85085, 255255, 92160, 109440, 155040, 201552, 369512, 646646, 1616615, 4849845, 1658880, 2119680, 2517120, 3565920
Offset: 1
For n=3, we have prime(n)=5 and any range of 2*3*5=30 consecutive numbers has 2 numbers whose smallest prime factor is 5, 5 numbers whose smallest prime factor is 3, and 15 numbers whose smallest prime factor is 2.
From _Bob Selcoe_, Oct 12 2017: (Start)
Triangle starts:
n/i 1 2 3 4 5 6
1 1
2 1 3
3 2 5 15
4 8 14 35 105
5 48 88 154 385 1155
6 480 624 1144 2002 5005 15015
(End)
-
t={{1}}; q=2; Do[p=Prime[n]; t=AppendTo[t, Join[{(q-1)*t[[ -1,1]]}, p*t[[ -1]]]]; q=p, {n,2,9}]; Flatten[t]
(* Second program: *)
Block[{nn = 8, s}, s = Array[FactorInteger[#][[1, 1]] &, Product[Prime@i, {i, nn}]]; Table[With[{P = Product[Prime@ k, {k, n}]}, Count[Take[s, P], ?(# == Prime[n - i + 1] &)]], {n, nn}, {i, n}]] (* _Michael De Vlieger, Oct 14 2017 *)
Showing 1-2 of 2 results.
Comments