cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174915 Numbers p such that p, q=p+2 and p+2*q are all primes.

Original entry on oeis.org

3, 5, 11, 41, 59, 101, 179, 191, 269, 311, 431, 521, 599, 821, 881, 1019, 1061, 1151, 1229, 1301, 1451, 1481, 1619, 1721, 1949, 2081, 2111, 2141, 2729, 2999, 3299, 3821, 4001, 4091, 4259, 4421, 4799, 4931, 5009, 5519, 5639, 5849, 6131, 6359, 6689, 6701
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A175914.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime(p+2) and IsPrime(3*p+4)]; // Vincenzo Librandi, Jan 29 2015
  • Mathematica
    lst={};Do[p1=Prime[n];p2=p1+2;If[PrimeQ[p2]&&PrimeQ[p1+2*p2],AppendTo[lst,p1]],{n,7!}];lst
    Reap[Do[p = Prime[m]; If[PrimeQ[p + 2 ] && PrimeQ[3 p + 4], Sow[p]], {m, 10^3}]][[2, 1]](* Zak Seidov, Oct 14 2012 *)
    Transpose[Select[Partition[Prime[Range[1000]],2,1],#[[2]]-#[[1]]==2 && PrimeQ[ #[[1]]+2#[[2]]]&]][[1]] (* Harvey P. Dale, Jan 28 2015 *)
  • PARI
    forprime(p=2,7000,q=p+2;if(isprime(q)&& isprime(p+2*q),print1(p,", ")))
    

Extensions

Definition and comment corrected by Zak Seidov, Dec 06 2010