A174963 Determinant of the symmetric n X n matrix M_n where M_n(j,k) = n for j = k, M_n(j,n) = n-j, M_n(n,k) = n-k, M_n(j,k) = 0 otherwise.
1, 3, 12, 32, -625, -24624, -705894, -19922944, -588305187, -18500000000, -622498190424, -22414085849088, -862029149531797, -35320307409809408, -1537494104003906250, -70904672533321089024, -3454944623172347662151, -177423154932124201844736
Offset: 1
Keywords
Examples
a(5) = det(M_5) = -625 where M_5 is the matrix [5 0 0 0 4] [0 5 0 0 3] [0 0 5 0 2] [0 0 0 5 1] [4 3 2 1 5]
References
- J.-M. Monier, Algèbre et géometrie, exercices corrigés. Dunod, 1997, p. 78.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A174962.
Programs
-
Magma
[ n^n -((n-1)*n*(2*n-1)/6)*n^(n-2): n in [1..18] ]; // Klaus Brockhaus, Apr 11 2010
-
Magma
[ Determinant( SymmetricMatrix( &cat[ [ i lt j select 0 else n: i in [1..j] ]: j in [1..n-1] ] cat [ 1+((n-1-k) mod n): k in [1..n] ] ) ): n in [1..18] ]; // Klaus Brockhaus, Apr 11 2010
-
Maple
with(numtheory):for n from 1 to 25 do:x:=n^n -((n-1)*n*(2*n-1)/6)*n^(n-2):print(x):od:
-
Mathematica
M[j_,k_,n_]:=If[j==k,n,If[k==n,n-j,If[j==n,n-k,0]]]; a[n_]:=Det[Table[M[i,j,n],{i,n},{j,n}]]; Array[a,18] (* Stefano Spezia, Aug 11 2025 *)
Formula
a(n) = n^n - ((n-1)*n*(2*n-1)/6)*n^(n-2).
Extensions
Edited by Klaus Brockhaus, Apr 11 2010