cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174964 Determinant of the symmetric n X n matrix M_n where M_n(j,k) = n^2+1 for j = k, M_n(j,k) = n for abs(j-k) = 1, M_n(j,k) = 0 otherwise.

Original entry on oeis.org

2, 21, 820, 69905, 10172526, 2238976117, 692352720200, 285942833483841, 151970818238211610, 101010101010101010101, 82081105631730092455932, 80052769211806164721787281, 92279361920609501281366280390
Offset: 1

Views

Author

Michel Lagneau, Apr 02 2010

Keywords

Examples

			a(5) = determinant(M_5) = 10172526 where M_5 is the matrix
  [26  5  0  0  0]
  [ 5 26  5  0  0]
  [ 0  5 26  5  0]
  [ 0  0  5 26  5]
  [ 0  0  0  5 26]
		

References

  • J.-M. Monier, Algèbre et géometrie, exercices corrigés. Dunod, 1997, p. 27.

Crossrefs

Cf. A174963.

Programs

  • Magma
    [ n eq 1 select 2 else (1-n^(2*n+2))/(1-n^2): n in [1..13] ]; // Klaus Brockhaus, Apr 15 2010
    
  • Magma
    [ Determinant( SymmetricMatrix( &cat[ [k eq j select n^2+1 else k eq j-1 select n else 0: k in [1..j] ]: j in [1..n] ] ) ): n in [1..13] ]; // Klaus Brockhaus, Apr 15 2010
  • Maple
    with(numtheory):for n from 2 to 25 do:x:=(1-n^(2*n+2))/(1-n^2):print(x):od:

Formula

a(1) = 2, a(n) = (1-n^(2*n+2))/(1-n^2) for n > 1.

Extensions

Edited by Klaus Brockhaus, Apr 15 2010

A386974 a(n) is the permanent of the symmetric n X n matrix M_n where M_n(j,k) = n for j = k, M_n(j,n) = n-j, M_n(n,k) = n-k, M_n(j,k) = 0 otherwise.

Original entry on oeis.org

1, 1, 5, 42, 480, 6875, 117936, 2352980, 53477376, 1363146165, 38500000000, 1193121531646, 40246286745600, 1467779362716303, 57544321060925440, 2413281884765625000, 107798160680740192256, 5109425146945021190505, 256115971082717276995584, 13536555538728461399269330
Offset: 0

Views

Author

Stefano Spezia, Aug 11 2025

Keywords

Examples

			a(5) = permanent(M_5) = 6875 where M_5 is the matrix
  [5 0 0 0 4]
  [0 5 0 0 3]
  [0 0 5 0 2]
  [0 0 0 5 1]
  [4 3 2 1 5]
		

Crossrefs

Cf. A174963 (determinants), A386975.

Programs

  • Mathematica
    M[j_, k_, n_]:=If[j==k, n, If[k==n, n-j, If[j==n, n-k, 0]]]; a[n_]:=Permanent[Table[M[i, j, n], {i, n}, {j, n}]];Join[{1}, Array[a, 18]]
  • PARI
    a(n) = matpermanent(matrix(n, n, j, k, if (j==k, n, if (k==n, n-j, if (j==n, n-k, 0))))); \\ Michel Marcus, Aug 12 2025
Showing 1-2 of 2 results.