A175070 a(n) is the sum of perfect divisors of n - n, where a perfect divisor of n is a divisor d such that d^k = n for some k >= 1.
0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10
Offset: 1
Keywords
Links
Crossrefs
Cf. A175067.
Programs
-
Maple
a:= n-> add(`if`(n=d^ilog[d](n), d, 0), d=numtheory[divisors](n) minus {n}): seq(a(n), n=1..100); # Alois P. Heinz, Dec 12 2024
-
PARI
A175070(n) = if(!ispower(n),0,sumdiv(n,d,if((d>1)&&(d
Antti Karttunen, Jun 12 2018 -
PARI
first(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = 2, logint(n, i), res[i^j] += i)); res} \\ David A. Corneth, Jun 12 2018
Formula
a(n) = A175067(n) - n.
Comments