cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175070 a(n) is the sum of perfect divisors of n - n, where a perfect divisor of n is a divisor d such that d^k = n for some k >= 1.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

a(1) = 0, for n >=2: a(n) = sum of perfect divisors of n less than n.
a(n) > 0 for perfect powers n = A001597(m) for m > 2.

Crossrefs

Cf. A175067.

Programs

  • Maple
    a:= n-> add(`if`(n=d^ilog[d](n), d, 0), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 12 2024
  • PARI
    A175070(n) = if(!ispower(n),0,sumdiv(n,d,if((d>1)&&(dAntti Karttunen, Jun 12 2018
    
  • PARI
    first(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = 2, logint(n, i), res[i^j] += i)); res} \\ David A. Corneth, Jun 12 2018

Formula

a(n) = A175067(n) - n.