cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A175068 a(n) = product of perfect divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 16, 27, 10, 11, 12, 13, 14, 15, 128, 17, 18, 19, 20, 21, 22, 23, 24, 125, 26, 81, 28, 29, 30, 31, 64, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 343, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4096, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

A perfect divisor d of n is a divisor such that d^k = n for some k >= 1.

Examples

			For n = 8: a(8) = 16; there are two perfect divisors of 8: 2 and 8; their product is 16.
		

Crossrefs

Programs

  • Maple
    A175068 := proc(n) local a,d,k ; if n = 1 then return 1; end if; a := 1 ; for d in numtheory[divisors](n) minus {1} do for k from 1 do if d^k = n then a := a*d ; end if; if d^k >= n then break; end if; end do: end do: a ; end proc:
    seq(A175068(n),n=1..80) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Times@@Select[Rest[Divisors[n]],IntegerQ[Log[#,n]]&],{n,70}] (* Harvey P. Dale, May 01 2017 *)
  • PARI
    A175068(n) = { my(m=1); fordiv(n,d,if((1==d)||(d^valuation(n,d))==n,m*=d)); (m); }; \\ Antti Karttunen, Nov 21 2017

Formula

a(n) > n for perfect powers n = A001597(m) for m > 2.
a(n) = A175069(n) * n. - Jaroslav Krizek, Jan 24 2010
From Ridouane Oudra, Nov 23 2024: (Start)
a(n) = n, for n in A007916.
a(n^m) = n^sigma(m), for n in A007916 and m an integer.
More generally, for all integer n we have :
a(n) = n^(sigma(A253641(n))/A253641(n)).
a(n) = n^(A346403(n)/A253641(n)). (End)

A175085 Numbers m such that product of perfect divisors of x = m has no solution.

Original entry on oeis.org

4, 9, 25, 32, 36, 49, 100, 121, 144, 169, 196, 225, 243, 289, 324, 361, 400, 441, 484, 512, 529, 576, 676, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3125, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4225
Offset: 1

Views

Author

Jaroslav Krizek, Jan 24 2010

Keywords

Comments

Perfect divisor of n is divisor d such that d^k = n for some k >= 1.

Crossrefs

Subsequence of A001597 (perfect powers). Complement of A175084.

Extensions

More terms from Antti Karttunen, Nov 21 2017

A175087 Number of numbers whose product of perfect divisors is equal to n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Jan 24 2010

Keywords

Comments

Perfect divisor of n is divisor d such that d^k = n for some k >= 1. See A175068 (product of perfect divisors of n), A175084 (possible values for product of perfect divisors of n) and A175085 (numbers m such that product of perfect divisors of x = m has no solution). a(n) = 0 or 1 for all n.
That is, this is the characteristic function of A175084. - Antti Karttunen, Nov 21 2017

Crossrefs

Cf. A175068, A175084 (positions of ones), A175085 (of zeros).

Programs

  • Mathematica
    With[{nn = 105}, ReplacePart[ConstantArray[0, nn], Flatten@ Table[{i -> 1}, {i, TakeWhile[#, # <= nn &] &@ Union@ Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]], {n, nn}]}] ] ] (* Michael De Vlieger, Nov 21 2017 *)
  • PARI
    A175068(n) = { my(m=1); fordiv(n,d,if((d>1)&&(d^valuation(n,d))==n,m*=d)); (m); };
    A175087(n) = sum(i=1,n,A175068(i)==n); \\ Antti Karttunen, Nov 21 2017

Formula

a(n) = Sum_{k=1..n} [A175068(k)==n]. - Antti Karttunen, Nov 21 2017

Extensions

More terms from Antti Karttunen, Nov 21 2017

A213367 Numbers that are not squares of primes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Comments

Numbers n such that A000005(n)<> 3.
First differs from A175084 at a(29).

Examples

			4 is not in the sequence because 4 as three divisors: 1, 2, 4.
		

Crossrefs

Complement of A001248. Column 3 of A210976.
Showing 1-4 of 4 results.