A175164 a(n) = 16*(2^n - 1).
0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
-
Python
def A175164(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)