cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A357692 Integers k such that A037278(k) is a term of A175252.

Original entry on oeis.org

1, 2, 4, 15, 16, 25, 60, 90, 100, 124, 150, 240, 375, 384, 600, 618, 625, 960, 1536, 3330, 3750, 4650, 5760, 10000, 10500, 10752, 15000, 16384, 17500, 24576, 25600, 40000, 49500, 62500, 102400, 139200, 168750, 198400, 323280, 526848, 960000, 1179648, 1248000, 1369125
Offset: 1

Views

Author

Michel Marcus, Oct 10 2022

Keywords

Examples

			A037278(4) = 124, a term of A175252.
A037278(15) = 13515, a term of A175252.
A037278(16) = 124816, a term of A175252.
A037278(25) = 1525, a term of A175252.
		

Crossrefs

Subsequence of A069872.

Programs

  • PARI
    is(n, {u = 10^5}) = {my(e = eval(concat(concat([""], divisors(n))))); if(e % n != 0, return(0); ); my(oldu = u, s, d); u = min(e, u); s = ""; d = divisors(factor(e, u)); d = select(x -> x <= u, d); for(i = 1, #d, s=concat(s, Str(d[i])); if(eval(s) == e, return(1)); if(eval(s) > e, return(0)); ); is(n, 10*oldu); } \\ David A. Corneth, Oct 10 2022, adapted from Michel Marcus' isok at A175252

Extensions

More terms from David A. Corneth, Oct 10 2022

A357428 Numbers whose digit representation in base 2 is equal to the digit representation in base 2 of the initial terms of their sets of divisors in increasing order.

Original entry on oeis.org

1, 6, 52, 63, 222, 2037, 6776, 26896, 124641, 220336192, 222066488
Offset: 1

Views

Author

Michel Marcus, Sep 28 2022

Keywords

Comments

a(1), a(2), a(3), a(8) and a(10) belong to A164894; A164894(13) = 2032242676629600594233921536, A164894(19) = 1288086824419468350412109535086131006200927555108489920512 and A164894(29) are also terms. - Rémy Sigrist, Sep 28 2022

Examples

			In base 2, 6 is 110 and its first divisors are 1 and 2, that is, 1 and 10.
		

Crossrefs

Cf. A164894, A175252 (base 10), A357429 (base 3).

Programs

  • PARI
    isok(k) = my(s=[]); fordiv(k, d, s=concat(s, binary(d)); if (fromdigits(s, 2)==k, return(1)); if (fromdigits(s,2)> k, return(0)));
    
  • Python
    from sympy import divisors
    def ok(n):
        target, s = bin(n)[2:], ""
        if target[0] != "1": return False
        for d in divisors(n):
            s += bin(d)[2:]
            if len(s) >= len(target): return s == target
            elif not target.startswith(s): return False
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Oct 01 2022

Extensions

a(10)-a(11) from Rémy Sigrist, Sep 28 2022

A357429 Numbers whose digit representation in base 3 is equal to the digit representation in base 3 of the initial terms of their sets of divisors in increasing order.

Original entry on oeis.org

1, 48, 50, 333, 438, 448, 734217, 6561081
Offset: 1

Views

Author

Michel Marcus, Sep 28 2022

Keywords

Examples

			In base 3, 48 is 1210 and its first divisors are 1, 2 and 3, that is, 1, 2 and 10.
		

Crossrefs

Cf. A175252 (base 10), A357428 (base 2).

Programs

  • PARI
    isok(k) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, 3)); if (fromdigits(s, 3)==k, return(1)); if (fromdigits(s, 3)> k, return(0)));
    
  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    def ok(n):
        target, s = "".join(map(str, digits(n, 3)[1:])), ""
        if target[0] != "1": return False
        for d in divisors(n):
            s += "".join(map(str, digits(d, 3)[1:]))
            if len(s) >= len(target): return s == target
            elif not target.startswith(s): return False
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Oct 01 2022

A357430 a(n) is the least integer > 1 such that its digit representation in base n is equal to the digit representation in base n of the initial terms of its set of divisors in increasing order.

Original entry on oeis.org

6, 48, 6, 182, 8, 66, 10, 102, 12, 1586, 14, 198, 16, 258, 18, 345, 20, 402, 22, 486, 24, 306484, 26, 678, 28, 786, 30, 26102, 32, 1026, 34, 1158, 36, 1335, 38, 1446, 40, 1602, 42, 204741669824, 44, 1938, 46, 2118, 48, 2355, 50, 2502, 52, 2706, 54, 8199524, 56
Offset: 2

Views

Author

Michel Marcus, Sep 28 2022

Keywords

Crossrefs

Cf. A175252 (base 10), A357428 (base 2), A357429 (base 3).

Programs

  • PARI
    isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0)));
    a(n) = my(k=2); while(! isok(k, n), k++); k;
    
  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    from itertools import count, islice
    def ok(n, b):
        target, s = digits(n, b)[1:], []
        if target[0] != 1: return False
        for d in divisors(n):
            s += digits(d, b)[1:]
            if len(s) >= len(target): return s == target
            elif not target[:len(s)] == s: return False
    def a(n):
        return next(i for d in count(1) for i in range(n**d, 2*n**d) if ok(i, n))
    print([a(n) for n in range(2, 41)]) # Michael S. Branicky, Oct 05 2022

Formula

a(2*n) = 2*n + 2 for any n > 1. - Rémy Sigrist, Sep 29 2022

Extensions

More terms from Rémy Sigrist, Sep 29 2022

A357481 a(n) is the least integer b such that the digit representation of n in base b is equal to the digit representation in base b of the initial terms of the sets of divisors of n in increasing order, or -1 if no such b exists.

Original entry on oeis.org

2, -1, -1, -1, -1, 2, -1, 6, 6, 8, -1, 10, -1, 12, 12, 14, -1, 16, -1, 18, 18, 20, -1, 22, 20, 24, 24, 26, -1, 28, -1, 30, 30, 32, 30, 34, -1, 36, 36, 38, -1, 40, -1, 42, 42, 44, -1, 3, 42, 3, 48, 2, -1, 52, 50, 54, 54, 56, -1, 58, -1, 60, 2, 62, 60, 7, -1, 66, 66, 68, -1, 70, -1, 72, 7
Offset: 1

Views

Author

Michel Marcus, Sep 30 2022

Keywords

Comments

It appears that a(n) != -1 iff n in A056653.

Examples

			In base 10, 12 is a term of A175252, and there is no other lesser base for which 12 works, so a(12) = 10.
		

Crossrefs

Programs

  • PARI
    isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0)));
    a(n) = if (n==1, 2, for (b=2, n-1, if (isok(n, b), return(b))); return(-1););
    
  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    def ok(n, b):
        target, s = digits(n, b)[1:], []
        if target[0] != 1: return False
        for d in divisors(n):
            s += digits(d, b)[1:]
            if len(s) >= len(target): return s == target
    def a(n):
        if n == 1: return 2
        for b in range(2, n):
            if ok(n, b): return b
        return -1
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Oct 05 2022

A357273 Integers m whose decimal expansion is a prefix of the concatenation of the divisors of m.

Original entry on oeis.org

1, 11, 12, 124, 135, 1111, 1525, 13515, 124816, 1223462, 12356910, 13919571, 1210320658, 1243162124, 1525125625, 12346121028, 12478141928, 12510153130, 12510254150, 1234689111216, 1351553159265, 1597717414885, 1713913539247, 12356910151830, 13791121336377
Offset: 1

Views

Author

Michel Marcus, Sep 22 2022

Keywords

Comments

This is different from A175252 in that the digits to be concatenated can end in the middle of a divisor.
All terms start with the digit 1. - Chai Wah Wu, Sep 23 2022
a(26) > 10^14. - Giovanni Resta, Oct 20 2022

Examples

			11 is a term since its divisors are 1 and 11 whose concatenation is 111 whose first 2 digits are 11.
1111 is a term since its divisors are 1, 11, 101, and 1111 whose concatenation is 1111011111 whose first 4 digits are 1111.
		

Crossrefs

Cf. A037278, A175252 (a subsequence).
Cf. A004022 (a subsequence).
Subsequence of A131835.

Programs

  • Mathematica
    q[n_] := (Join @@ IntegerDigits @ Divisors[n])[[1 ;; Length @ (d = IntegerDigits[n])]] == d; Select[Range[1.3*10^6], q] (* Amiram Eldar, Sep 22 2022 *)
  • PARI
    f(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); s; \\ A037278
    isok(k) = if (k==1, 1, my(v=strsplit(f(k), Str(k))); (v[1] == ""));
    
  • Python
    from sympy import divisors
    def ok(n): return "".join(str(d) for d in divisors(n)).startswith(str(n))
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 22 2022
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A357273_gen(): # generator of terms
        yield 1
        for n in count(1):
            r = str(n)
            if n&1 or r.startswith('2'):
                m = 10**(c:=len(r))+n
                s, sm = '', str(m)
                for d in divisors(m):
                    s += str(d)
                    if len(s) >= c+1:
                        break
                if s.startswith(sm):
                    yield m
    A357273_list = list(islice(A357273_gen(),10)) # Chai Wah Wu, Sep 23 2022

Extensions

a(16)-a(25) from Giovanni Resta, Oct 20 2022
Showing 1-6 of 6 results.