A175309 a(n) = the smallest prime prime(k) such that prime(k+j) - prime(k+j-1) = prime(n+k+1-j) - prime(n+k-j) for all j with 1 <= j <= n.
2, 3, 5, 18713, 5, 683747, 17, 98303867, 13, 60335249851, 137, 1169769749111, 8021749, 3945769040698829, 1071065111, 159067808851610411, 1613902553, 6919940122097246303, 1797595814863
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..19
- BOINC project to search all up to 2^64
- Symmetric Prime Tuples, SPT test project
Programs
-
Mathematica
A175309[n_] := Module[{k}, k = 1; While[! AllTrue[Range[n], Prime[k+#] - Prime[k+#-1] == Prime[n+k+1-#] - Prime[n+k-#] &], k++]; Return[Prime[k]]]; Table[A175309[n], {n, 1, 7}] (* Robert Price, Mar 27 2019 *)
-
PARI
a(n)={ my( last=vector(n++,i,prime(i)), m, i=Mod(n-2,n)); forprime(p=last[n],default(primelimit), m=last[1+lift(i+2)]+last[1+lift(i++)]=p; for( j=1,n\2, last[1+lift(i-j)]+last[1+lift(i+j+1)]==m || next(2)); return( last[1+lift(i+1)])) } \\ M. F. Hasler, Apr 02 2010
-
PARI
isok(p, n) = {my(k=primepi(p)); for (j=1, n, if (prime(k+j) - prime(k+j-1) != prime(n+k+1-j) - prime(n+k-j), return (0));); return (1);} \\ Michel Marcus, Apr 08 2017
Formula
Extensions
Terms through a(12) were calculated by (in alphabetical order) Franklin T. Adams-Watters, Hans Havermann and D. S. McNeil
Minor edits by N. J. A. Sloane, Apr 02 2010
a(14) from Dmitry Petukhov, added by Max Alekseyev, Nov 03 2014
a(16) from BOINC project, added by Dmitry Petukhov, Apr 06 2017
a(18)-a(19) from SPT test project, added by Dmitry Petukhov, Mar 16 2025
Comments