cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175395 a(n) = 2*Fibonacci(n)^2.

Original entry on oeis.org

0, 2, 2, 8, 18, 50, 128, 338, 882, 2312, 6050, 15842, 41472, 108578, 284258, 744200, 1948338, 5100818, 13354112, 34961522, 91530450, 239629832, 627359042, 1642447298, 4299982848, 11257501250, 29472520898, 77160061448, 202007663442, 528862928882, 1384581123200, 3624880440722, 9490060198962, 24845300156168, 65045840269538, 170292220652450, 445830821687808, 1167200244410978, 3055769911545122, 8000109490224392, 20944558559128050
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

a(n) (n=1..) is half the number of nX2 binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors. - R. H. Hardin, Dec 02 2010

Crossrefs

Programs

  • Magma
    [2*Fibonacci(n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
    
  • Mathematica
    Table[2 Fibonacci[n]^2, {n, 0, 40}] (* Bruno Berselli, Nov 03 2015 *)
    LinearRecurrence[{2,2,-1},{0,2,2},50] (* Harvey P. Dale, May 24 2023 *)
  • PARI
    a(n) = round(2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec(2*x*(1-x)/(1+x)/(1-3*x+x^2) + O(x^30)) \\ Colin Barker, Sep 28 2016

Formula

a(n) = 2*A007598(n).
G.f.: 2*x*(1-x)/(1+x)/(1-3*x+x^2). - Colin Barker, Feb 23 2012
a(n) = F(n-1)*F(n+1) + F(n-2)*F(n+2), where F = A000045, -F(-2) = F(-1) = 1. - Bruno Berselli, Nov 03 2015
a(n) = 2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5. - Colin Barker, Sep 28 2016
For n>1 a(n) is the denominator of the continued fraction [1, 1, ... 1, 2, 1, 1, ... 1, 2] with n-2 1's before each 2. See A236428 for the numerator. - Greg Dresden and Kevin Zhanming Zheng, Aug 16 2020