A175492 Numbers m >= 3 such that binomial(m,3) + 1 is a square.
7, 10, 24, 26, 65, 13777
Offset: 1
Links
- Wikipedia, Tetrahedral number
Crossrefs
Programs
-
Mathematica
lst = {}; k = 3; While[k < 10^6, If[ IntegerQ@ Sqrt[ Binomial[k, 3] + 1], AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *) Select[Range[3,14000],IntegerQ[Sqrt[Binomial[#,3]+1]]&] (* Harvey P. Dale, Apr 04 2017 *)
-
PARI
isok(m) = (m>=3) && issquare(binomial(m,3)+1); \\ Michel Marcus, Mar 15 2022
-
Python
from sympy import binomial from sympy.ntheory.primetest import is_square for m in range(3, 10**6): if is_square(binomial(m,3)+1): print(m) # Mohammed Yaseen, Mar 18 2022
Comments