A175629 Legendre symbol (n,7).
0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1
Offset: 0
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n).
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,-1,-1).
Crossrefs
The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS.
Moebius transform of A035182.
Programs
-
Magma
&cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018
-
Maple
A := proc(n) numtheory[jacobi](n,7) ; end proc: seq(A(n),n=0..120) ;
-
Mathematica
LinearRecurrence[{-1,-1,-1,-1,-1,-1},{0,1,1,-1,1,-1},100] (* or *) PadRight[ {},100,{0,1,1,-1,1,-1,-1}] (* Harvey P. Dale, Aug 02 2013 *) Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *)
-
PARI
a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019
Formula
a(n) = a(n+7).
|a(n)| = A109720(n).
a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6).
G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018
Comments