cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A101455 a(n) = 0 for even n, a(n) = (-1)^((n-1)/2) for odd n. Periodic sequence 1,0,-1,0,...

Original entry on oeis.org

0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 20 2005

Keywords

Comments

Called X(n) (i.e., Chi(n)) in Hardy and Wright (p. 241), who show that X(n*m) = X(n)*X(m) for all n and m (i.e., X(n) is completely multiplicative) since (n*m - 1)/2 - (n - 1)/2 - (m - 1)/2 = (n - 1)*(m - 1)/2 == 0 (mod 2) when n and m are odd.
Same as A056594 but with offset 1.
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the non-principal Dirichlet character mod 4. (The principal character is A000035.)
Associated Dirichlet L-functions are for example L(1,chi) = Sum_{n>=1} a(n)/n = A003881, or L(2,chi) = Sum_{n>=1} a(n)/n^2 = A006752, or L(3,chi) = Sum_{n>=1} a(n)/n^3 = A153071. (End)
a(n) is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 0, y = -1, z is arbitrary. - Michael Somos, Nov 27 2019

Examples

			G.f. = x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + x^21 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=4, Chi_2(n).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1979, p. 241.

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), this sequence (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • GAP
    a := [1, 0];; for n in [3..10^2] do a[n] := a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/(1+x^2))); // G. C. Greubel, Aug 23 2018
    
  • Maple
    a := n -> `if`(n mod 2=0, 0, (-1)^((n-1)/2)):
    seq(a(n), n=1..10^3); # Muniru A Asiru, Feb 02 2018
  • Mathematica
    a[ n_] := {1, 0, -1, 0}[[ Mod[ n, 4, 1]]]; (* Michael Somos, Jan 13 2014 *)
    LinearRecurrence[{0, -1}, {1, 0}, 75] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    {a(n) = if( n%2, (-1)^(n\2))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = kronecker( -4, n)}; /* Michael Somos, Mar 30 2012 */
    
  • Python
    def A101455(n): return (0,1,0,-1)[n&3] # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = 0, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris May 17 2005
Euler transform of length 4 sequence [0, -1, 0, 1]. - Michael Somos, Sep 02 2005
G.f.: (x - x^3)/(1 - x^4) = x/(1 + x^2). - Michael Somos, Sep 02 2005
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 * (1 + 2*v). - Michael Somos, Aug 04 2011
a(n + 4) = a(n), a(n + 2) = a(-n) = -a(n), a(2*n) = 0, a(2*n + 1) = (-1)^n for all n in Z. - Michael Somos, Aug 04 2011
a(n + 1) = A056594(n). - Michael Somos, Jan 13 2014
REVERT transform is A126120. STIRLING transform of A009454. BINOMIAL transform is A146559. BINOMIAL transform of A009116. BIN1 transform is A108520. MOBIUS transform of A002654. EULER transform is A111335. - Michael Somos, Mar 30 2012
Completely multiplicative with a(p) = 2 - (p mod 4). - Werner Schulte, Feb 01 2018
a(n) = (-(n mod 2))^binomial(n, 2). - Peter Luschny, Sep 08 2018
a(n) = sin(n*Pi/2) = Im(i^n) where i is the imaginary unit. - Jianing Song, Sep 09 2018
From Jianing Song, Nov 14 2018: (Start)
a(n) = ((-4)/n) (or more generally, ((-4^i)/n) for i > 0), where (k/n) is the Kronecker symbol.
E.g.f.: sin(x).
Dirichlet g.f. is the Dirichlet beta function.
a(n) = A091337(n)*A188510(n). (End)

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A035182 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -7.

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 1, 4, 1, 0, 2, 0, 0, 2, 0, 5, 0, 2, 0, 0, 0, 4, 2, 0, 1, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 2, 6, 0, 4, 0, 0, 1, 2, 0, 0, 2, 0, 0, 4, 0, 4, 0, 0, 0, 0, 1, 7, 0, 0, 2, 0, 0, 0, 2, 4, 0, 4, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 4, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 5*v^2 + 4*w^2 - 8*v*w - 4*u*v + 2*u*w + v - w. - Michael Somos, Jul 21 2004
Half of the number of integer solutions to x^2 + x*y + 2*y^2 = n. - Michael Somos, Jun 05 2005
Inverse Moebius transform of A175629. - Jianing Song, Sep 07 2018
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -7. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			G.f. = x + 2*x^2 + 3*x^4 + x^7 + 4*x^8 + x^9 + 2*x^11 + 2*x^14 + 5*x^16 + ...
		

Crossrefs

Moebius transform gives A175629.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(14), 1), 106); B := (-1 + A[1] + 2*A[2] + 4*A[3] + 6*A[5]) / 2; B; // Michael Somos, Jun 10 2015
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 23 2014 *)
    a[ n_] := If[ n < 1, 0, Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9] / 2]; (* Michael Somos, Jan 23 2014 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; [ !(e%2), 1, e+1] [kronecker( -7, p) + 2]))}; \\ Michael Somos, May 28 2005
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([ 2, 1; 1, 4], n, 1)[n])}; \\ Michael Somos, Jun 05 2005
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -7, p)*X)))[n])}; \\ Michael Somos, Jun 05 2005
    

Formula

a(n) is multiplicative with a(7^e) = 1, a(p^e) = e + 1 if p == 1, 2, 4 (mod 7), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, May 28 2005
2 * a(n) = A002652(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(7) = 1.187410... (A326919). - Amiram Eldar, Oct 11 2022

A321859 Number of primes congruent to 3, 5, 6 modulo 7 and <= n minus number of primes congruent to 1, 2, 4 modulo 7 and <= n.

Original entry on oeis.org

0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jianing Song, Nov 20 2018

Keywords

Comments

a(n) is the number of primes <= n that are quadratic nonresidues modulo 7 minus the number of primes <= n that are quadratic residues modulo 7.
The first 10000 terms (except for a(2)) are nonnegative. a(p) = 0 for primes p = 3, 11, 211, 3371, 3389, ... The earliest negative term (besides a(2)) is a(48673) = -1. Conjecturally infinitely many terms should be negative.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.

Examples

			Below 100, there are 10 primes congruent to 1, 2, 4 modulo 7 and 14 primes congruent to 3, 5, 6 modulo 7, so a(100) = 14 - 10 = 4.
		

Crossrefs

Cf. A175629.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), this sequence (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • Mathematica
    Accumulate[Table[Which[PrimeQ[n]&&MemberQ[{3,5,6},Mod[n,7]],1,PrimeQ[ n] && MemberQ[ {1,2,4},Mod[ n,7]],-1,True,0],{n,90}]] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    a(n) = -sum(i=1, n, isprime(i)*kronecker(-7, i))

Formula

a(n) = -Sum_{primes p<=n} Legendre(p,7) = -Sum_{primes p<=n} Kronecker(-7,p) = -Sum_{primes p<=n} A175629(p).

A321864 a(n) = A321859(prime(n)).

Original entry on oeis.org

-1, 0, 1, 1, 0, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 5, 6, 5, 4, 5, 4, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4
Offset: 1

Views

Author

Jianing Song, Nov 20 2018

Keywords

Comments

Among the first 10000 terms there are only 13 negative ones, with the earliest one (besides a(1)) being a(5006) = -1.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.

Examples

			prime(25) = 97. Among the primes <= 97, there are 10 ones congruent to 1, 2, 4 modulo 7 and 14 ones congruent to 3, 5, 6 modulo 7, so a(25) = 14 - 10 = 4.
		

Crossrefs

Cf. A175629.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), this sequence (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • PARI
    a(n) = -sum(i=1, n, kronecker(-7, prime(i)))

Formula

a(n) = -Sum_{primes p<=n} Legendre(prime(i),7) = -Sum_{primes p<=n} Kronecker(-7,prime(i)) = -Sum_{i=1..n} A175629(prime(i)).

A289741 a(n) = Kronecker symbol (-20/n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 20: repeat [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1].
This sequence is one of the three non-principal real Dirichlet characters modulo 20. The other two are Jacobi or Kronecker symbols {(20/n)} (or {(n/20)}) and {((-100)/n)} (A185276).
Note that (Sum_{i=0..19} i*a(i))/(-20) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-5)). The fact Q(sqrt(-5)) has class number 2 implies that Q(sqrt(-5)) is not a unique factorization domain.

Crossrefs

Cf. A035170 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), this sequence (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Mathematica
    Array[KroneckerSymbol[-20, #]&, 100, 0] (* Amiram Eldar, Jan 10 2019 *)
  • PARI
    a(n) = kronecker(-20, n)

Formula

a(n) = 1 for n in A045797; -1 for n in A045798; 0 for n that are not coprime with 20.
Completely multiplicative with a(p) = a(p mod 20) for primes p.
a(n) = A080891(n)*A101455(n).
a(n) = -a(n+10) = -a(-n) for all n in Z.
Multiplicative with a(2) = a(5) = 0, a(p) = (-1)^floor(p/10) otherwise; equivalently: a(n) = (-1)^floor(n/10) if n is coprime to 2*5, 0 otherwise. - M. F. Hasler, Feb 28 2022

A322796 a(n) = Kronecker symbol (6/n).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 26 2018

Keywords

Comments

Period 24: repeat [0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1].
Also a(n) = Kronecker symbol (24/n).
This sequence is one of the seven non-principal real Dirichlet characters modulo 24. The other six are Jacobi or Kronecker symbols {(-6/n)} (or {(n/6)}, {(-24/n)}, {(n/24)}, A109017), {(-12/n)} (or {(n/12)}, A134667), {(12/n)} (A110161), {(-18/n)} (or {(-72/n)}), {(18/n)} (or {(72/n)}, {(n/72)}) and {(-36/n)}. These sequences all become the same after taking absolute values.

Crossrefs

Cf. A035188 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), this sequence (d=24).

Programs

  • Magma
    [KroneckerSymbol(6, n): n in [0..100]]; // Vincenzo Librandi, Jan 01 2019
  • Mathematica
    Array[KroneckerSymbol[6, #] &, 105, 0] (* Michael De Vlieger, Dec 31 2018 *)
    Table[KroneckerSymbol[6, n], {n, 0, 100}] (* Vincenzo Librandi, Jan 01 2019 *)
  • PARI
    a(n) = kronecker(6, n); \\ --- Argument order corrected by Antti Karttunen, Sep 27 2019
    

Formula

a(n) = 1 for n == 1, 5, 19, 23 (mod 24); -1 for n == 7, 11, 13, 17 (mod 24); 0 for n that are not coprime with 21.
Completely multiplicative with a(p) = a(p mod 24) for primes p.
a(n) = A091337(n)*A102283(n).
a(n) = A109017(n+12) = A109017(n-12).
a(n) = a(-n) = a(n+24) for all n in Z.

Extensions

Definition corrected by Antti Karttunen, Sep 28 2019

A316569 a(n) = Jacobi (or Kronecker) symbol (n, 15).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0
Offset: 0

Views

Author

Jianing Song, Aug 05 2018

Keywords

Comments

Period 15: repeat [0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1].
Also a(n) = Kronecker(-15, n).
This sequence is one of the three non-principal real Dirichlet characters modulo 15. The other two are Jacobi or Kronecker symbols (n, 45) (or (45, n)) and (n, 75) (or (-75, n)).
Note that (Sum_{i=0..14} i*a(i))/(-15) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-15)).

Crossrefs

Cf. A035175 (inverse Moebius transform).
Kronecker symbols: A063524 ((n, 0) or (0, n)), A000012 ((n, 1) or (1, n)), A091337 ((n, 2) or (2, n) or (n, 8) or (8, n)), A102283 ((n, 3) or (-3, n)), A000035 ((n, 4) or (4, n) or (n, 16) or (16, n)), A080891 ((n, 5) or (5, n)), A109017 ((n, 6) or (-6, n)), A175629 ((n, 7) or (-7, n)), A011655 ((n, 9) or (9, n)), A011582 ((n, 11) or (-11, n)), A134667 ((n, 12) or (-12, n)), A011583 ((n, 13) or (13, n)), this sequence ((n, 15) or (-15, n)).

Programs

  • Magma
    [KroneckerSymbol(-15, n): n in [0..100]]; // Vincenzo Librandi, Aug 28 2018
  • Mathematica
    Array[ JacobiSymbol[#, 15] &, 90, 0] (* Robert G. Wilson v, Aug 06 2018 *)
    PadRight[{},100,{0,1,1,0,1,0,0,-1,1,0,0,-1,0,-1,-1}] (* Harvey P. Dale, Feb 20 2023 *)
  • PARI
    a(n) = kronecker(n, 15)
    

Formula

a(n) = 1 for n == 1, 2, 4, 8 (mod 15); -1 for n == 7, 11, 13, 14 (mod 15); 0 for n that are not coprime with 15.
Completely multiplicative with a(p) = a(p mod 15) for primes p.
a(n) = A102283(n)*A080891(n).
a(n) = a(n+15) = -a(-n) for all n in Z.
From Chai Wah Wu, Feb 16 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-5) + a(n-7) - a(n-8) for n > 7.
G.f.: (x^7 - x^5 + 2*x^4 - x^3 + x)/(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1). (End)

A097343 Triangle read by rows in which row n gives Legendre symbol (k,p) for 0

Original entry on oeis.org

1, -1, 0, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, 0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 0, 1, -1, -1, 1, 1, 1, 1
Offset: 2

Views

Author

Robert G. Wilson v, Aug 02 2004

Keywords

Comments

Row sums = 0. (p,k)==k^((p-1)/2) (mod p). For example, row n=4 of the triangle (for the 4th prime p = 7) reads: 1,1,-1,1,-1,-1,0 because 1^3==1, 2^3==1, 3^3==-1, 4^3==1, 5^3==-1, 6^3==-1, 7^3==0 (mod 7). - Geoffrey Critzer, Apr 18 2015

Examples

			1,-1,0 ; # A102283
1,-1,-1,1,0; # A080891
1,1,-1,1,-1,-1,0; # A175629
1,-1,1,1,1,-1,-1,-1,1,-1,0; # A011582
		

Crossrefs

See A226520 for another version.
Cf. A068717.

Programs

  • Haskell
    a097343 n k = a097343_tabf !! (n-2) !! (k-1)
    a097343_row n = a097343_tabf !! (n-2)
    a097343_tabf =
       map (\p -> map (flip legendreSymbol p) [1..p]) $ tail a000040_list
    legendreSymbol a p = if a' == 0 then 0 else twoSymbol * oddSymbol where
       a' = a `mod` p
       (s,q) = a' `splitWith` 2
       twoSymbol = if (p `mod` 8) `elem` [1,7] || even s then 1 else -1
       oddSymbol = if q == 1 then 1 else qrMultiplier * legendreSymbol p q
       qrMultiplier = if p `mod` 4 == 3 && q `mod` 4 == 3 then -1 else 1
       splitWith n p = spw 0 n where
          spw s t = if m > 0 then (s, t) else spw (s + 1) t'
                    where (t', m) = divMod t p
    -- See link.  Reinhard Zumkeller, Feb 02 2014
  • Maple
    with(numtheory):
    T:= n-> (p-> seq(jacobi(k, p), k=1..p))(ithprime(n)):
    seq(T(n), n=2..15);  # Alois P. Heinz, Apr 19 2015
  • Mathematica
    Flatten[ Table[ JacobiSymbol[ Range[ Prime[n]], Prime[n]], {n, 2, 8}]]

Formula

(p, p)=0, all others are +- 1.

A327135 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^3.

Original entry on oeis.org

1, 0, 9, 3, 3, 4, 3, 0, 6, 9, 4, 2, 9, 5, 3, 3, 5, 7, 1, 9, 7, 6, 5, 7, 9, 8, 1, 5, 0, 0, 7, 7, 0, 0, 2, 3, 4, 7, 8, 0, 1, 9, 2, 5, 8, 4, 8, 3, 2, 3, 8, 3, 6, 4, 6, 3, 5, 0, 2, 3, 0, 9, 4, 3, 2, 4, 3, 2, 8, 1, 0, 6, 9, 0, 3, 2, 3, 6, 2, 1, 7, 4, 3, 4, 0, 4, 6, 2, 2, 9, 2
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A175629 and s = 3.

Examples

			1 + 1/2^3 - 1/3^3 + 1/4^3 - 1/5^3 - 1/6^3 + 1/8^3 + 1/9^3 - 1/10^3 + 1/11^3 - 1/12^3 - 1/13^3 + ... = 32*Pi^3/(343*sqrt(7)) = 1.0933430694...
		

Crossrefs

Cf. A175629.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), this sequence (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), A328723 (d=5), A329715 (d=8), A329716 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: A326919 (s=1), A103133 (s=2), this sequence (s=3).

Programs

  • Mathematica
    RealDigits[32*Pi^3/(343*Sqrt[7]), 10, 102] // First
  • PARI
    default(realprecision, 100); 32*Pi^3/(343*sqrt(7))

Formula

Equals 32*Pi^3/(343*sqrt(7)).
Equals (zeta(3,1/7) + zeta(3,2/7) - zeta(3,3/7) + zeta(3,4/7) - zeta(3,5/7) - zeta(3,6/7))/343.
Equals (polylog(3,u) + polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4) - polylog(3,u^5) - polylog(3,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/7) + polygamma(2,2/7) - polygamma(2,3/7) + polygamma(2,4/7) - polygamma(2,5/7) - polygamma(2,6/7))/(-686).
Equals 1/(Product_{p prime == 1, 2 or 4 (mod 7)} (1 - 1/p^3) * Product_{p prime == 3, 5 or 6 (mod 7)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Showing 1-10 of 16 results. Next