cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276626 Semiprimes n such that (n-1)/3 is prime.

Original entry on oeis.org

10, 22, 34, 58, 94, 142, 178, 202, 214, 382, 394, 454, 502, 538, 634, 718, 922, 934, 1042, 1138, 1294, 1318, 1402, 1438, 1642, 1714, 1762, 1822, 1858, 1894, 1942, 2182, 2218, 2362, 2434, 2518, 2578, 2722, 2734, 2902, 2974, 3118, 3274, 3694, 3778, 3958, 4198, 4282, 4414, 4534, 4594, 4678
Offset: 1

Views

Author

Zak Seidov, Sep 07 2016

Keywords

Comments

All semiprimes in A175666 are terms: a(2)=10=A175666(2), a(3)=34=A175666(4),etc.

Examples

			10=2*5 and (10-1)/3=3 prime, 22=2*11 and (22-1)/3=7 prime.
		

Crossrefs

Cf. A175666.

Programs

  • Mathematica
    Reap[Do[If[PrimeQ[(a=1+3*Prime[k])/2],Sow[a]],{k,1000}]][[2,1]]
  • PARI
    isok(n) = (bigomega(n)==2) && (((n-1) % 3)==0) && isprime((n-1)/3); \\ Michel Marcus, Sep 07 2016
    
  • PARI
    is(n)=n%3==1 && isprime(n\3) && bigomega(n)==2 \\ Charles R Greathouse IV, Sep 07 2016

A340509 a(n) = 3*A005382(n)-1.

Original entry on oeis.org

5, 8, 20, 56, 92, 110, 236, 290, 416, 470, 596, 632, 686, 812, 920, 992, 1010, 1100, 1136, 1316, 1496, 1640, 1730, 1802, 1820, 1856, 1982, 2072, 2180, 2432, 2486, 2630, 2810, 2900, 2990, 3026, 3206, 3512, 3710, 3836, 3890, 4196, 4286, 4376, 4592, 4826, 4880, 4970, 5276, 5600
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2021, following a suggestion from Des MacHale

Keywords

Comments

These are the numbers b(n) + 2*b(n)-1, where b is A005382, and so form a potentially infinite sequence of numbers which are the sum of two primes. An analog of A175666.

Crossrefs

Programs

  • Maple
    q:= p-> isprime(2*p-1):
    map(x-> 3*x-1, select(q, [ithprime(i)$i=1..300]))[]; # Alois P. Heinz, Jan 27 2021
  • Mathematica
    Select[Range[5600], And @@ PrimeQ[{# + 1, 2*# - 1}/3] &] (* Amiram Eldar, Jan 27 2021 *)

Formula

a(n) = A005383(n) + A005382(n). - Wesley Ivan Hurt, Feb 22 2022
Showing 1-2 of 2 results.